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Practical Aspectsi of Nonlinear Pzograummg Ig

1. Aspects of modelling that affect optimization

1.1. Introduction. This survey paper has two main purposes: to summarize (briefly) certain

aspects of modelling that influence the performnance of optimization algorithms, aid to describe

recent advances in methods for nonlinear programming that influence the solution of practical

problems. These two themes are not unconnected. A well constructed mathematical model

should be such that the bad effects of ill-conditioning, degeneracy and inconsistent constraints

are minimized. Ironically, the purpose of good software is to deal effectively with precisely these

problems. Therefore it is not surprising that much of the insight necessary to construct a well-

posed mathematical model is pertinent to the formulation of robust algorithms.

The principal problem of concern will be the nonlinear programmning problem:

NP minimize F(z)

suibject to t < ~ u,

where F(x) (the objective hinction) is a smooth nonlinear function, &L is a constant matrix of

constraints, and c(z) is a vector of smooth nonlinear constraint functions. The objective function

F -and the constraint functions taken together comprise the problem hinctious. Unless otherwise

stated, the prob~lem functions will be assumed to be at least twice-continuously differentiable.

(Methods that require this degree of stnoothness will usually work if there are isolated (lisconti-

uities away from the solution). We shall use U'z) to denote the gradlient of F(x), anid a (z) the

gradient of ci(x). The solution of NP will he denoted by Z.

We shall begin with a statement of teu "modxelling p~rinciples" that, may help to make the re-

sulting p~robleml N11 more tmxc('jtible to existing noulinear lprugrAitnhjig software. This is followed

* by a review of the practical asp~ects of quasi-'Newton sequential qm tadratic programmning (SQl')

methods for nonlinear programming. We conclude by Jpreseiting examples of the application of

SQP methods to sonie illustrative optimization problenn.

1.2. Some basic modelling principles. Our observatious of practical op~timnization problemis

have indicated that, even with the best available software, the 4.llicieit. ojliuisationl of a umodlel

* ~~cani be critically dejpenid~n. onl ce'rtinu prop)erties or thei liorgulatiou. It. is often the ras- that. the

formuulator ouf the model must, make numewrous decisions that (it) not, affect the accuracy to which

the model reflects the real world, yet are crucial to whether the miodel is anurnable to solution by

* an optimization algorithm.

Our experience with the role of modelling in nunmerical optimization will be sununarized by

a list of ten "modelling p~rinciples". These principles may serve as a guide for those who have

little knowledge of thme intricacies andl potential pitfalls of modern op~timuization codes. They have

been derived from our own experieces- with real problems.

Of course, the nature of possible models varies so imuch that it is impossible to treat all

relevant aspe-cts of modllhing. The main thesis of these principles is that developers of models
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should consider in the initial stages the ultimate need to solve an optimi 'zation problem, since it
is unlikely that optimization software will ever reach the state wherein a general routine can be

*it-zed with impunity for all problems.

* For additional material on aspects of modelling that influence the perfo~rmance of optimniza-
tion methods, the reader is referred to Gill, Murray and Wright (1981).

BASIC MODELLING PRINCIPLES

* 1. Formulate a simple model first and add features In conjunction with running the optimiza-
tion.
A miodel to be optimized should be developed by striking a reasonable balanice between the aims of

* improved accuracy in the miodel (which usually implies added complexity in the formulation) and
* increased ease of optimization. This might be achieved by invoking an optimization procedure on

succesively more complicated versions of the model, in a form of "stepwise" refinemtent. Thus,
the effects of each refinement in the model on the optimization process can be monitored, and
funidanmental difficulties can be discovered much more quickly than if no optiniization wer~e aIplicd

* uintil the model was essentially complete. This is especially important when dealing with models
* that contain many interconnected subsystems, each requiring extensive calculation.

II. Attempt to use smooth problem functions.
Probably tine most ftudamental property of the problem ffunctions: with respect to ease of opti-
inizatiJij is differentiability, which is important because algorithmns are based on using available

- inforimation about a function at one point to deduce its behavior at other points. If the problemi
* finic iomsare twice-c omtiiiuousiy differentiable, say, the ability of an algorithin to locate the1 solu-
*tion is greatly enhianced compAred to) the case when the problemi functions are nion-diffcrentiable.

Therefore, miost op~timnizationi software is designed to solve sumooth problems, and there is a great
inceintive to formulate differentiable model functions. A usefuil feature of niethods for smooth
problems is that they tend to give more informiation concerning the quality of the solution. For
examnple, some inonlinear proranunming mnethods can be shown to exhibit a superlinear rate of
convergenice in tihe neighborhood of a local naininiun. If a method lernliinate4 at at point for
which this rate or convergentC is VXiiibiteil, the1 maerT Will have H01me C0lafidtlce that time filil point

is close to a local utininuni. (When solving a probllem on at digital comnputer, we need to define
carefully what we mean by a "smooth" problem. In reality, all software iniminizes a function

fl(flx)), which is the floating-point representation of F(x). The function fL(F(x)) is piecewise
constant at the round-off level. If we define CA to be the absolumte precision of F, i.e.,

IF(x) - ff(F(x))I =cA(x),

* . then algorithms for smooth problems will work whenever changes in the variables produce changes

- in F fliat are much greater tihan CA. Note that the vast nmjority of optimization software Assumes

....................................................
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that F is computed to full precision; i.e., it is assumed that cA is of the order of AC, IIF(x) 11, where

, is the relative machine precision.)

Ill. Avoid defining problem functions that are the result of some iterative procedure (such
as the solution of a differential equation or the evaluation of an integral).

Problem functions defined by an iterative procedure are often the source of subtle discontinuities

that may iupede the progress of the optimIfization. The solution of these subproblems to full
machine precision (even if possible) generally requires considerable computational effort, arnd thus
tends to be regarded as unwarranted by the modeller, since the integral or differential equation
(or whatever) is only an approximation to sonic more complicated real-worll phenomenon.

The se of an iterative procedure to define a problem function most often occurs when the

variables of the problem are fhnctions of a continuous parameter (in an optimal control problem,

for example). In many instances, an effective strategy for this type of problem is to discretize the
problem befAre applying the optimization method. Accurate solutions to the continuous problem

are then found by refining the discretization between optimizations. Such a strategy illustrates

again that it is often worthwhile to interleave modelling and optimization, since the creation of

an increasingly accurate discretisation is in fact a modelling process.

IV. Think carefully about the nature of the constraints.
It is not always appreciated that substantial improvements in performance and robustness can
result when nietliods exploit the different I)roperties of simple bounds, linear constraints and

nonlinear constraints. Whenever possible, the user should isolate the linear constraints from the
nonlinear coe.straints and use software that differentiates between constraint types during the

optimiz ation. Unfortunately, some problem formats guarnuite that a linear constraint will be
treated ;L a nonlinear constraint. For example, in the class of geometric progralnning problems

the objective and constraint functions are sunms of functions of the form

Oi(-T) ai,4 "X2

where the zj are the variables (constrained to be positive) and the aij are constants. The

transforiumijoii of a linear constraint it4o a .4uin Of rtctions of the forim (1.1) muumneesstrily

increases the degree of dillicllty of the l)roblemn.

The transformation of a problem from one form to another was often unavoidable in the

past because less softwawe was available. When algorithms for unconstrained optimization were

"more numerous aind more elrective than for constrained problems, it was common practice for

simple bound constraints to be treated by a change of variable. Today, however, algorithms for

l)roblems with only simple hounds or linear constraints are conmparable in efficiency to uncon-
strained algorithms. Therefore, it is virtmlly never worthwhile to transform bound-constrained

problems (in fact, it is often beneficial tW add bounds on the variables - see below), and it is

rarely appropriate to alter linearly constrained problems.

~~~~~~~~..._-...-....._. .. '..-... ..... .. ".. ........... '......... ...... .. ,_ .... :.....";...,......._.-." . .- ...
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Transformations can be used effectively to transform nonlinear constraints into simple bound
constraints (for example, by using polar coordinates instead of cartesian coordinates to deal with

range constraints of the form I < E z2 <i . However, care should be taken to ensure that the
transformation does not lead to a new problem that is more difficult to solve, or has additional

(spurious) solutions.

V. Do not attempt to eliminate equality constraints from the problem.

Modellers often assume that since there may be no physical significance to a point at which non-

linear equality constraints are violated, such constraints should be satisfied exactly at all stages of
the optimization. Accordingly, users often attempt to "eliminate" nonlinear equality constraints

froin the problem by the following method. The variables are partitioned into "independent"

and "dependent" sets. The minimization is then performed only with respect to the independent

variables, and the dependent variables are determined by "solving" the equality constraints. To

be more precise, let x denote the vector of dependent variables and u the vector of independent

variables. The constrained problem
minimize F(z, u)

subject to c(z,u) -0,

is solved by expressing c(x, u) 0 as z - T(u) for some transformation T, and then minimizing

F(T(u), u) with respect to u. This strategy is particularly common when there are special fast
methods for solving the equations c(z, U) -0.

We; do not rec'ommend this approach if the constraints have any significant degree of nonlin-

earity. Firstly, it is difficult to impose any simple bounds upon the dependent variables. Secondly,

the resldting algorithm is of the "constraint-following" tyl)e, which will tend tA) be less elficient
than other methods. Our experience is that the total computational effort required to solve for

the dependent variables at every trial point is not usually worthwhile, compared to expending a

" similar amount of effort in the optimization without elindnating the variables. The user would

be )(,tter advised to use a general nonlinear progranuning method.

VI. Distinguish between "hard" and *soft" constraints.
II 111a11y proiblems, 1,4 I)olIud cOtsutraints may lot- cla.sili('d as either "hard" or "soft". For

exam.ple, hard Iou.ds couid specify the region in which the problem functions are well-dlefined.

A soft constraint might represent a bound whose violation we are prepared to tolerate if this

resulted in a large decrease in the objective function. hi some cases, variables may have both a

soft i)omd and a hard bound.

A good method of treating a soft bound of the form zi . bi is to exclude it from the simple

bound constraints and include it in the objective function in the fonn of a mild pen alty term of

the form 1pi [z - b,} , where [y)- denotes the function lin 0, y). Modest values of pi do not

lead to the severe ill-conditioning that occurs with traditional )enalty methods. If the variable

is also constrained by a hard bound, the constraint can be treated explicitly in the usual way.

.. .....-. .,
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As a general rule, the presence of simple bounds simplifies a problem. by reducing dimension-

ality. However, if a bound has only a slight impact upon the problem (i.e., if the objective function .

does not change rapidly as the bound is perturbed), the degree of difficulty of the problem may

be increascd beause the algorithm needs to resolve smadl Lagrange multipliers. If many of the

bounds with small multipliers would be classified as "soft", the use of a penalty term tends to

remove these constraints from the active st. p
Similarly, a penalty function of the form 1 p (xi - di)2 can be used to produce a solution that

is biased towards some "desired" value d.

VII. Avoid modelling near-dependent equality constraints

Constraints occur in problem formulations for a variety of reasons. Often the very nature of the

variables imposes an equality constraint -- for example, if the variables {zi} represent proportions

or probabilities, this gives rise to the constraint Ej xi 1 (as well as non-negativity restrictions).

Constraints of this type are "genuine" equalities, in the sense that the computed solution must

satisfy them exactly (where "exactly" means "within working precision"). However, it is not un-
usual in modelling that constraints that might seem initially to be firm equality constraints should .. -

be treated instead as constraints that need not be satisfied with maximum possible accuracy. For
examtple, this situation occurs when the underlying model is known to contain inaccuracies. In

some problems, forcing constraints of this type to be equalities may cause there tW be no fea-

sible solution, or may distort the properties of the solution if the corresponding constraints are

ill-conditioned.

We shall use a simple two-dinlensional example to illustrate not only the the potential diffi-

culties asociated with dependent consl.raints, )ut also one simple method for dealing with them.

Suppose that we require the inimum of a function of two variables subject to two independent

linear equality constraints. In this case, the solution lies at the point of intersection of the con-
straints (the objective function has no influence on the solution). However, suppose that one of

the two constraints is really a copy of the other, but that due to small errors in the modelling

process, tihe constraints are not exactly dependent. Now, the two constraints are nearly parallel I

and the point of intersection lies at. a point that ay be very dilferent from the solution of the
essetifially eqiivalent prohemx posel with a single constraint.

A clue to one method of resolution of this difficulty lies in the observation that if one or

the other of the constraints were ignored during the o)tim ation, it would be violated by only a 1

very small qumatity. Suppose that each dependent equality constraint is replaced by an inequality

constraint with a very narrow range. For example, the linear constraint aTz - b would be replaced

by

b - 6 < az b b + 6, "

where 6 is a small, but not negligible, positive quantity. (Exactly the same transformation can be
ramie for a nonlinear constraint.) In the example above, the active-set strategy of the optiminztion

p L •..
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procedure will decide that a lower value of the objective function is achieved if one of the equality

constraints is not satisfied exactly at the solution.

In Section 3.5 we shall use this type of range constraint in methods that are robust on

problems with dependent constraints, mid show that the idea of allowing certain constraints to

be violatedl by a small quantity recurs in many practical solution techniques. This is only to be

expected, sitce it is never possible to satisfy constraints exactly in finite-precision arithmetic.

VIII. Use information about the problem to scale the variables and constraints.

It is well ktiown that the "right" scaling of variables and constraints can dranatically improve

the efficiency and accuracy of optimization methods. The scale of a problem is the measure of

the relative imlportance of the variables and constraints - or, equivalently, the scale of a problem

is a statement of what is "large" and what is "small" in a problem.

In the absence of any other information, an algorithm will generally assume that each variable

or constraint has equal weight in the optimization. For example, if a unit change in a variable

produces a small change in F compared to other variables, the algorithm will tend to make a

larger change to that variable. Clearly, if the variables do have equal significance, this situation

is quite satisfactory. However, if the small variation in F is due to the fact that the objective

function is almost independent of the variable, the problem should be rescaled. (Note that in this

case, fixing a variable or constraint is an acceptable form of problem scaling.)

The most common form of scaling is to define new variables and constraints using a linear

trmsformation. (For simplicity, in the following discussion we shall assume that the nonlinear

constrailts are equalities of the formin ci(z) = 0.) Suppose we define new variables t and constraints

c such that

z = D1: and i = D2 C, (1.2)

where D, and D2 are nonsingular matrices (usually diagonal). With this scaling, the deriva-

tives of the original and transformed objective function are related by V.F = DtVF and

V2F DIV2 FD1. Similarly, for the constraints we have A = D2 A, where A and A are the

Jacobian miatrices of the original and transformed constraints. When D, and D2 are diagonal, an

interpretation of the scaling (1.2) is that Di and D2 "ratk" the elenments of the gramlient vector

Stlil ccitst.railits so) that each is of equal import nce.

The important thing to be"ar in mind is that a badly scaled problem is essentially an ill-

coumlitioiid problem. Badly scaled variables lead to ill-conditioned Hessian matrices; badly scaled

constraints give rise to near-singular Jacobian matrices. Within optimization routines, conver-

g(nce tolerancs and other criteria are necessarily based upon an implicit definition of "small"

and "large", and thus variables with widely varying orders of magnitude may cause difficulties

for somic algorithms.

Arguably the most important rule of scaling is that the variables of the scaled problem should

be of similar magnitude and of order unity in the region of interest. If typical values of all the

variables are known, a problem can be transformed so that the variables are all of the sme order

S. .-. . ... *~ *..'~* . .. . . . . . . . .
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of magnitude. In this case, the transformation D, of (1.2) is a diagonal matrix whose elements

-ire typical values of x.

An important property of a theoretical algorithm is that of invariance with respect to the

scaling (1.2). A scale-invariant algorithm has the property that when it is applied to both the

* original problem and the transformed problem, tie resulting sequences of iterates {zk) and (4)}

satisfy x, = D1 iA; for all k. This property does not imply that it is unnecessary to choose a

sensible scaling for a p~roblemn wheit scale-invariant algorithmn is lbeing used. Scale-imvariance

c~uinot b)e achieved in, a practical imnplementation of iu algorithm. Not only is computer arithmetic

not scale-in variant, but also it is impossible to devise at scale-invarianit test that anl algorithm has

convergedl to a point which satisfies the necessary or sufficient conditions. Many algorithms

treat quanitities that are "sufficiently small" in magnitude ats "negligible (in effect, as zero).

However, since there is no universal definition of "sniall", it is impossible to formulate a scale-

* invariant procedure for distinguishming between quantities that should be treated aW zero, and

scale-dependent quantities that should not be neglected. To illustrate this point, consider the

* appllication of any quasi-Newton method that is scale-invariant in the sense just dlescribed. If the

* algorithm were applied to the scaled and unscaled problem, we may regard the two sequences

*{xk} and(4)i~ as belonging to two different spaces. Each value xz, in the x-spare is related to a

value :Zk in the :i-space by the forinula 2&. = Dlxk. The optinality test of the agoritim must

involve con~sidlerationl of the miagnitude of the gradient normn. However, since the gradient normu is

tendhing to zero with a (different value (either 11g1,I1 or IIDmgkII1) in each space, this optinmality test

canmiiot be inade scale-invariwmt. Thus, thme number of elements in each1 se~quence may be different.

Fuirthiermore, the initial estimate of the Hessian is almost always dlefinedl as a imimit inatrix. If this

is dolme ill both the X- aiid i-spacesi, thme scale invarianice is immnediately lost.

Another part Of all algorithm that is umavoidtbly scale-depemdent is the criterion for deciding

* whcn at nonlinear constraint of the form ci (x) 0I is satisfied. Giveni a constraint value, say

ei (X) =0 ,iiseessary to knlow s9omnibig aIboid thme naturalJ scaling of time, problenm in order
to mnake a sensib~le decision about whether the constraint is sufficiently close to zero. The only

way of Overcomng this Problemn is to let the user de~cide when a conistraint is suficienitly satisfied.

This leads to the ide~a of a tlser-(letfllel feasibility tolerance bi Chat defines what. is really "small"

* ~for each coiistraimt. For c'Xatiiple, the, part, of the tveritijiiationm criterion that conicernis the test. for

featsibility would require thiat kc (x)l !5 for each constraint.

* IX. Try to provide as much information about the function as possible.
As at general rule, algorithms tend to be mnore mnccssful and robust whenm niore iniforimation about

the problem is provided. For example, if the problein funictions are simooth, algorithms that Ise

first and~ second derivatives perforin munch better timix algorithms that use function values only.

It is; generally perceived that a st-cond-derivative algorithin is rarely useftil because the cost

of computing the seconid derivatives umay be several orders of nmagnitude larger thani that of cal-

* culating first derivatives. This is undotubtedly true in somec situations, but there are a renmarkably
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large numb~er of problems for which the first and second dlerivatives of the problem fuinctions inay

* be obtained for about the same. cost - for example, geometric programmiing problems, where the

* objctive an(1 constraint functions are of the form (1.1). Moreover, it is relatively straiglitforward

* to design software that will automaticaldly differentiate the original problem functions.

-Other exainple4 of problems with cheap higher decrivatives occur in exponential fitting and

fac-torable programming (for example, see McCormick, 1983).

X. Take special care to check that the problem functions and their derivatives are programmed

correctly.

Before emlbarking on a series of optimization runs, the user should verify that the code which

dlefines thme prob~lem fanctions is correct. One obvious check is to evaluate the problem functions

ait a point where their values are kniown.

Errors; inl programnning the function inay be quite subtle in that the function value is "al-

inost" correct. For example, the function may be accurate to less than full precision because of

thme inaccurate calculation of a subsidiary quantity, or the limited accuracy of data uipon which

* the function depends. A commnon error onl machines where numericAl calculations are usulally

lperforlnedl in double precision is to include even one single-precisionl constant in the calculatr'n

of the function; since soine conllpilers (10 not convert such constants to (lotible precision, hlf the

correct figures inay be lost by such a seemingly trivial error.

Incorrect calculaitioni of derivatives is by far the mnost commnon user error. Stich errors are

* altiost never simmall, and thus no algoritlun call lerforin correctly in their p)resence. This is whly

- we recomnd1( that some sort of consistency check onl the dlerivatives be perfortned. The most

straightforward ieans of ch ecking fivr errors inl the dlerivative inivolvt-s comuparinig a finite-differenze

* ~approbximationl with the supposedly exact value.

*1.3. Some useful features of an implementation. hII the following, we give sonie fea-tutres

of an "idleal" impmlementation that would hielp the user apply the nmodlelling lprinciples inost ef-

fectively. This list is nmot intendled to be exhaustive and we have included some iteis iii the list

* Uthat have not, been referred to ill thme text. We do niot Clai1m that it is possible to inuplemiemit every

* F~~eahi re iul all i reustan.

* * The iethod should treat. simple bounds, linear constraints and nontlinmear constraints

*separately. Moreover, the mnethod shotild efrectively deal with nonlinear constraints,
ytrmaimi coptiv wiaumo istaned or linearly constrained methods if constraint

mionilinearities are not present.

*There should be time option of compJutinmg the problem functions only at points that

saitisfy the linear constraints.

*The software should p~rinlt all the information necessary for the uiser to check how

closely thme finmal point siatisfies the necessary and sufficient conditions for an optimum.

* The user should be able to specify a fea.sibility tolerance for each conistraint.
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0 It should be possible to solve problems for which the precision of the problem functions

is not necessarily close to the machine precision.

* The user should be able to scale the problem by specifying the scaling matrices D1

and D2 of (1.2).

* The user should have the option of checking the problem derivatives before starting

the trininization.

2. Quasi-Newton methods for unconstrained minimization

Quasi-Newton methods are iterative, arid generate a sequence {xk} that is intended to converge

to x. At the k-th iteration, the new iterate is defined by

Xk+l = Xk + akpA, (2.1)

where a is a non-negative scalar called the stcp length, and pk is an n-vector called the search

direction. These methods utilize the values of the problem finctions and their gradients at trial

iterates, but do not assume the availability of higher derivative information. (When explicit first

derivative% ire not available, quasi-Newton methods can be implemented using finite-difference

approximations to the gradient -- see, e.g., Gill, Murray and Wright, 1981.) A typical iteration

of a quasi-Newton method comprises three related parts: computation of pk, choice of ak, and

iiplating the necessary matrix factorizations.

The search direction pk in unconstrained optimization is defined by the equation HkpA = -gk,

where Hk is an approximation to the Hessian matrix of F. Many computational benefits accrue .-

fromi updating a factorized form of II. Suppose that H1 -- R Rk, where RA is ui upper-

triangular niatrix (the Cholesky frwtor of Hk). The search direction is then obtained by solving

two trianeular systems:

Rkq = -gA and Rkpk = q. (2.2)

The main purpose of the linesearch is to force steatly progress by computing a step length a"

such that F(Xk + 'IkPk) is "sufficiently less" than F(xAk); i.e., the decrease can go to zero only as

tlie solution is a)proac:hed.

It is widely a'ceptied today that the best quasi-Newtoti update is given by the IFGS formula:

1 T 1 T
Hk+j = I! - -_UkUk + .j-YkYk, (2.3)

where sk = xk+l - xk, uk = ltl, 4A and yk = gk+1 - 91,. If Hk is positive definite, Hkj I as defined",

by (2.3) will be positive definite if amd only if the approximate curvature yT sA satisfies

KB's > 0 (2.4)

(see Dennis and Mor6, 1077).

... - " ................ -. .... •....., ,
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Denni and Schnabel (1981) have shown that the BFGS update (2.3) may be expressed as a

raiik-one update to Rk. Let 13 and I~ denote the scalars (uksk) i and (YkTk) A~ respectively. The

BFGS update may then be writtcn as Hk+l fT -, +, where

Rk+I = Ik + vw , with V -Rksk, WO -ik -Utk.

The inatrix Rk, whilh is not upp)er-triaIngular, may be restored to tipper- triangular form by

finding an orthogonal matrix P such that

PRk+l = k ,

where Ilk I is upper trianguflar. Then HLkf I =f Rktl asT

required. A suitable matrix P can be constrtedl from two sweeps of plane rotations; for more

details, see Gill ct al. (1974).

Since Pk satisfies Hkpk, = -gk, two miatrix-vector multip~lications may be avoided in the
imiplemenitationi of the BFGS update (2.3). Substituting from (2.2), we obtain

1 1q 1n Y g:

where~ a Igpk and -y (yT.-5k) 1.

Representation of HA: by its Cholesky factors avoids a serions p)roblem that would otherwise

arise in quatsi-Newton methods: the loss of lpesitive-(lefiniteness through rounding errors. With

exact arithmietic, satisfaction of (2.4) shouldd ensure that thme BFGS update generates strictly

Jpositive-definite Hessian approximiations. H-owever, in practice the formula (2.3) camui lead to a

sinigular or indefinmite mnatrix IHkm+i. When Ilk is represeutedl by its Cholesky factorization and

upd(ates are p~erfornmed directly to the factorizationm, e'very 111, will be umeurically positive de(finite.

Maintenmance of positive-definiteness is conmsidleredl to be a crucial element in the suiccess

of qIusi-Newt.om methods ill uniconitrailI('( optim~izationl (see Dennis and~ More, 1977). 1mm this

* conitext, the litiesearch call also have the imuportatitt Function of gimratileitig that, cnillion (2.4)

h -lsit. (-very iteration. ]it p)Jrticttlar, tii'tlhods of saregirdedt JpolyIIomiaI interp~olationm (4ee

e.g., Brent, 1973; Gill, Murray and Wright,, 1981) Canm find a1 value of (%A, that sa.tisfiesl

0F(xk) - F(xk + (kAcpk)> -PakkPAk (2.5a) 7

19(Xk + iikPk)'pkI -t1gTPkq (2.5b)

where 0 < p 5 t' I and p < ! Condition (2.-5a) ensuret; a "suficient lerrease" in F,;and (2.5b)

gutarantees satisfaction of (2.4).

A popular alternative Iinesearch t(chmnique is known as backtracking (see, e.g., Dennis and

* Schnabel, 1983). Given a fixed 0 < p < 1, it sequence {/3j) is generate'd that satisfies flo I and
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fi> j~ >~ pfli. The value of ag, is taken as the first element in the sequencc j3, satisfying
the sufficient decrease criterion

-~k F(Xk + /ijPk) -Apf9g;Pt,

where 0 < ju < 1. Since a backtracking method can never generate a value of a greater than

unity, (2.4) may not hold. Most iinplen icntations of uniconstrained quasi-Ncwton mc-thods with

a b~acktracking liiiesearch simnply skip the update in this case. (As the iterates converge, (2.4) is

* satisfied for the initial step of unity, and hence the difficulty dhoes not arise in the limit.) The

simplicity of backtracking algorithms and their utility in convergence proofs have led to their

frequent appearance in the literature.

3. Methods for nonlinear equality constraints

3.1. B~asic theory and notation. In this section, we consider methods for problems that

contain only nonlinear equality constraints, i.e.

NEP minimixe F(z)

subject to cj(x) =0, i M , .m

We concentrate on this simplified problem in order to emnlhamive the treatment of nonl~inear

constraints.

The Kuhn-Tucker conditions for NEP state the existence of an ?n-vcctor A*(the Lagrange
imiltiplier vector) such that

(For at detailed dlisculssion of first- and second-order Kuhn-Tucker condlitionst for optimality, see,
* for example, Fiacco aid McCoriik, 1908, and Powell, 1974.)

Let Z(x) denote at matrix whose coluns forin a basis for the swt of vec.(tors orthogonal to

the rows of A(x); i.e., A(x)Z(x) =0. An eqnivalent statemnent of (3.1) in terms of Z is

Z(x~)g* O = 0.

The vtwtor Z(:r)Ty(xz) is termed the projected graienft of F at X.

Thme Lagrnugimuz function

L(x.pu) =F(x) - A'c(x),

wherejp is an rn-vector of Lagrange-inultiplier estimates, plays an important role in mmdrstanding

and solving constrained( problems. Condition (3.1) is a statement that x is a stationary point

(with respect to x) of the Lagramigian function when p = ~One of the secondl-ordler sufficiency.

conditions for optiniality is that the prcjectel Ilesiumi of the Lngranigiazi function,

Z(X)TV 2L(X,A)Z~z Z(.x)T(V'F(Z) - Av,V ci)Z(Z),
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is positive definite when z = z, p = A

In the following, we consider sequential quadratic programming (SQP) methods for NEP,
in which the search direction is the solution of a quadratic progrmming sabproblem and the
steplength achieves a sufficient reduction in some "merit function". The purpose of the merit

function is to enforce steady progress to the solution by balancing the (usually) conflicting aims

of reducing the objective function and satisfying the nonlinear constraints.

The quadratic programming subproblem is of the form:

gkp+ !Htp (3.2a)

subject to Akp = -Ck, (3.2b)

where ck and Ak denote c and A evaluated at zx. The so-called linearized constraints (3.2b) repre-
sent a first-order approximation to the nonlinear constraints of the original problem. The matrix . -

Ht is an approximation to the Hessian of the Lagrangian function. The Lagrange multiplier
vector of this subproblem (denoted by pk) satisfies

Hkpk- + gk Akjpk,

and may be used as an estimate of A*

SQP methods differ in their definitions of the matrix Hk, and, as we shall see later, formula-

tion of the QP constraints (3.2b). In the next two sections, we shall see how the choice of matrix

Hk is related to the method used to solve the eluality-constraint QP (3.2).

3.2. Methods for equality-constraint QP. All methods for solving (3.2) may be viewed as
alternative methods for solution of the migumented system of equations for p and ju

(H AT) )4)(3(-P (9)
which expresses the optimnality and feasibility conditions. (The subscript k has been suppressed

for convenience.)

Melhods for 4olving (3.3) iar, often btsed upon roustruc.ing anm equivalent, but simpler,
systeiv. Let S be a nonsingular (n + m) x (n + rn) matrix. The solution of (3.3) is equivalent to

the solution of

ST~ T~(~=~T() with (P = U .(3.4)

We shall consider two commonly used choices for S derived from the LQ factorization of A:

an m x m lower-triangular matrix L and an n x n matrix Q such that

AQ=(L 0). (3.5)

. .o .- o
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Assume that the colunms of Q are partitioned so that

Q=(Y Z),

where Y has m columns. Then let S be given by

s =(Y z (3.6)

and let p, and p, denote the first m mid last n - m elements of i, respectively. Substituting

from (3.6) into (3.4), we obtain

[yTjY YTHZ LT py (T 9

ZTHY ZTHZ Pz I=IZTg
Thus, p and p may be found by solving the equations

LP (3.7a)

ZTHZp3 = -ZTg - ZrHYp, (3.7b)

p = YP. + Zp, (3.7c)

LTu = yT(g + Hp). (3.7d)

Note that the projected Hessian matrix ZTHZ appears explicitly in (3.7b). If (3.2) has a well-

defined solution, this matrix is positive definite.

We consider two definitions of L and Q. In the methods of Gill and Murray (1974), Wright

(1976), Murray and Wright (1978) and Gill et al. (1984c), L and Q are found by explicitly

triangularizing A using Householder mat.rices or stabilized elementtry matrices. In this paper,

we consider only the use of Householder matrices, in which case the matrix Q is orthogonal.

Computation of the LJ fartorization may be view(l as updating an existing factorization as

new rows are adlded in the last position. Assume that the L.Q factorization (3.5) of A is available,

and consider the matrix A, which is A augmented by the row aT. Then

where t and q are the relevant partitions of QTz. Let Q denote a Householder nmatrix of the form
D. - I

where the vector u and scalar/3 are chosen to mnihilate all but the first element of a, and to

leave t unchanged. (For details of how these quntities are defined, see Stewart, 1973.) Then!.~~ 00 ('0)
. " (3 .9 )

or..(L 0), where Q O=Q .

--7



14 Practical Aspects of Nonlinear Programming

The so-called "standard" LQ factorization is a version of (3.8) and (3.9) in which the rows

of A are added to the null matrix one by one. The initial Q matrix is taken as the identity,

and the initial L is the mill matrix. While computing the factorization, the sequence of House-
holder transformations is stored jin compact form (i.e., Q is not storedl explicitly); the vector aTQ

needled in (3.8) is obtained by applying the sequence of stored transformations. Once the initial

factorization hams been colnpleted, the necessary explicit matrix Q is obtained by multiplying the

compact Liseliolder transformations together in reverse order.

A second choice for the matrices L and Q involves defining Q so that

QTJJQ = 1. (3.10)

In this case, ZTHZ =I andl ZTHY =0, and time equations (3.7) for p and it become

4 P. -C (3.l1la)

P, -ZTg (3.11b)

p= Yp" + Zp5  (3.11c)

LTI& 9 ~~~ (3.11d)

The recurrence relations (3.8) and (3.9) may be adapted to compute Q satisfying (3.10) by
definling thme initial Q matrix to be R 1 '.

Equations (3.11) are used to solve the augmented systemn in the QP method of Goldfarb

adMl(dani (1983). Similar technmiques have been suggested previously for both positive-definite

and ind- finite quiadratic program,;. In the latter case, the relationship ZTHZ = D is maintained
- insteadl of (3. 10), where thme matrix D inay be dliagonal (Murray, 1971) or block-diagonal (Bunch

and Kauifian, 1978). -

3.3. Properties of the SQP search direction. It is clear from (3.7c) that the search direction

is the sum of two vectors: at ramige-space compnl~ment p,, (=- Yp,.), and a null-space compjonent p.

* (~~ Zp,,). Time range-space vector satisfies thme underdetermined e'quatiomns (3.2bi), and thus defines

astep to the linearized versions of thme tionlinear cons.traints. (If the colmnimis of Y are orthogonal,

* P" de-fines ile step) to the umevrest point onl time linearized constraints.) The imill-space compo-
iwnt p, deimmes Il1w step froiii :k + p1, to o.w iiiiiiiiiiiii ofr ti qia-dratic moiiol' or1 ille Lagralgiam

fiictioii inl time4 sIlbsJpace ortimogonal ito thle constraint. iorimials. Anl explicit (list iimctitin between

- the aimis of satisfying tihe constraints anld mninimizing time Lagramagian fnction is imlportant be-

cause thme properties of the equations that dlefine the associated vectors are essentially different.

* The range-space vector is a Newton step in the sense that it is commputed using exalct derivative

information. By contrast, the null-spamc comnponenit is a qmmsi-Newtov? step defined using ap-
* proximiate derivative informationi from Ill, Thel( better aticuracy of the ralge-sl)Jw(' component

* ~imlies that f1li generally remumaims smnaller thtan Z"gI astm slto i pr 1em . During the

final iterations, the behavior of SQP methods is characterized by the relationship

11p, I11~ 11 . 0; (3.12)
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i.e., the final search directions lie almost wholly in the null space of A.

3.4. The definition of Hk. Based on its success in the unconstrained case, the BFGS formula

(2.3) seems a logical choice for updating an approximation to the Hessian of the Lagrangian

funiction. However, the definition of the updating formula in the constrained case is complicated

1)y the fact that there is some choice as to which matrix should be approximated.

A~n iiplortalkt feature of the( BFGS update in unmconstrained optimlization is the maintenance

of positive-definiteness. 1n the con~strainedl case, the relevant positive-(lefinite matrix is the pro-

jccted Hessian Z7IIZ. Accordingly, the first class of methods that we shall consider is based

onl maintaining a quatsi-Newton approximation H, to the projected Hessian. There are many

closely-related variants of this approach. For example, for linearly constrained problems, see Gill 0
aidi( Murray (1974) and Murtagh and Saunders (1078). For ionlinearly constrained p~rob~lems, see

Murray and Wright (1978), Coleman and Gamin (1982), Gabay (1979), and Nocedal and Overton

(1982). A typical update for methods in this class is

H,= H, - UZZ+ YY9(3.13)

where barred quantities refer to the updated valuies, g, ZT, Tz= -g,~ Z(2 - )

and u, = For these projected quasi-Newton methods, the matrix HI that defines the QP
subproblem (3.2) is ZHZ 7' which is positive semi-definite. A common featutre of the projected

quasi-Newtonx methods mentioned ab~ove is that the numll-spauc comnponient of the search direction
is define('(romi thme equations

HI-Px = 9

in ordler to avoid the necessity of recurring the mnatrix ZTIJY (cf. (3.7b)).

In contriat t~o the unconstrainied case, it is not always possible to choose at step length that

guarntees the condition y.4s, > 0. As a resilt, there may he iterations in which tlhe quasi-Newton

ujudate cannot be p~erformiedl because of loss of positive-definitenest4. However, since (3.12) implies

that, the search directions willI lie in the will sp-we of A ats the iterates converge, y~q, is typically

l)ositiVc' inl tlie neighuborhmoodl of the solution.

Anl iiiiiiietliate cluise(piiwe of stobriig onily aii aIpproxiinationi to the IproEcj'dl lUessi~ij i-s that

time Q11 ninriipliers is cainot be computed, since the full matrix It is riot available (cf. (3.7d)).
However, if Q is orthogonal, the least-squares ultipliers A, at a point x may be calculated from

the e.quationls

The continuity p~rop~erties of the associatedl Z are significant in p~rojectedl quasmi-Newton nmeth-
ods5 becautse Z (lelineS thme operation of projection. For examplle, inl proving local convergence for

algorithuns that explicitly utilize Zj t is essential that sniill changes in x shouild lead tW small

chmanges in Z (see, e.g., Coleman and Conn, 1082ai, b); and Noredal and Overton, 1982). The
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standard method of computting the LQ factorization does not provide a continuous representa-

tiou of Z(x) (see Coleman and Sorensen, 1984). However, a continuous representation of Z may

be defined using a triviid modification of the relations (3.8) and (3.9). Recall that, given the

* factorization (3.5) of the matrix A, we require the factors L and Qof A at the point i= x + p.
* ~ ~ Exactly as th sandard factorization, (3.8) and (3.9) can be used to update the factors as

the rows of A are added to the null matrix one by one, except that the explicit matrix Q from

the previons QP subprobkint is taken as the initial inatrix Q in (3.8). Each Householder trans-

* formation is then mnultip~lied into Q after the corresponding row has been transformed. With

the standard procedure, the Householder transformations can be stored in compact form, but

with this approach, each new row of A must be transformed by a fill orthogonal matrix (which

is somewhat more expensive unless sonic of the constraints arc linear). The benefit is that Z is

* continuous at a point where A hasq full rank, and approaches it limit when computed at a sequence

of points {xk} converging sufficiently fast to a suitable point z* (see Gill et al., 1985a).

The second major representation of Hk is as, a quasi-Newton approximation to the full Hessian

* of the Lagramgiami function. (This method is especially appropriate if the calculation of the search

* ~direction requiires the full] Hessia, egtentholdfndlyquins (3.11).) Consider a

BFGS-type update of the form

1 T 1  T

where 9 : - x and u H Is. Since HI is menmt to approximate the Hessian of thme Lagrangian

function, a "natural" choice for v would lbe y,, the diffe-rence in gradients of the Lagrangian

function; i.e.,

Y, 1 g - (AT - A T),

with Ataken ais the best available multiplier estimate. However, since z* is miot ani unconstrained

intmin of the Lagraugiami function, it may he impossible, with iuly linesearch, to finid a step)

length for which yr's is positive. Hfence, thle updlate might be skipped at every iteration, which

wouldl not only dlestroy thI ocal convergence p~rop~erties, but also adversely affect the efficiency

* of the mjetliod away frotin the solution.

A popilar titelhod for dealing witlh tids difficumlty is to use y,, as v in (3.14) oilly wlem 17'

*is sufficiently positive; otherwise, v is takemi as at pertuirbedl vector V, sutch that #T7's > 0. A

l1trturbatio)I that we have found to be quite successful in practice is defined as folflowst. When

Y T < 0, compuilte the scalar
_'T

ST(AWe - ATc)

The quantity in thme denmominator is anm appjroximnation to the curvature of I1JII, which is positive

at z*. If 0 is negative, the update is skipped; otherwise,

v = + W(AT -T Arc),
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where w is mny positive scalar such that w > 0i. The motivation for this choice of v is the result

(duc to Boggs, Tolle and Wang, 1082) that a necessary condition for q-superlincar convergence is

that the approximate Hessian mnatrices must satisfy

lim IZkY(Hk V2L(z ))kI=o

3.5. Inconsistent and ill-conditioned constraints. In the preceding discussion of SQP

methods, we have assumed that thc equations (3.2b) are consistent. When allI the constraints of

the original p~roblemn are linear, th.. subproblem constraints can be inconsistent only if the original

problem has no solution. With nonlinear constraints, however, the constraints of the subproblcem

inay be inconsistent even whenm the original p~roblcem has a well-posed solution. Techiniques for

dealing with inconsistent constraints fall into two major categories. In both cases, the search

dlirection satisfies at shifted set of linear constraints

Ap =r - c. (3.15)

The first approach generates a search direction designed to minimize a weighted combination

of the quadratic approximation to the Lagrangian and the residual vector of the unperturbed

constraints (the vector c + Ap). The compromise is achieved by choosing p as the solution of an

ruiconstrained problem of the form

Innn1z a V + T111,) + $D(c + Ap), (.0

where 4)(r) is at sclrvl fu Ciothat mteasures the "size" of r, and a is a mon-negative

scalar. The theoretical basis of this class of mnetho(1 is that a ininmmn of (3.10) always exists,

even wlwn at soltition oIf the QP stibproblcnk (3.2) does not.

Thje algorithms of Diggs (1972a), Bartmoloinew-Biggs (1082) and Fletcher (1981) correspond

t~o choosing 40 as the two-norm andl one-norm, respectiv'y. In either case, it .%i abe shownm that

the imonstraijwd inuitniz(r of (3.16) is tine solut ioii of a Q11 with objet1ive- funictionl (3.2a) aund

coiuiotrai [AS (3. 15). n1w foriti or toe vector r deeioiils oij the oleffiutiouti ol'1. If 4)(r) is deichned ats

11IrII2, tll tClw cotipontents of r are- generally iwa-zero, and 1) is odefined by etluatiou4 similar to

(3.11) (see Bartholoinew-Biggs, 1082, for more details).- If ob(r) =lint111, p is khe solution of an ti-
QP (see Fletcher, 1081). At the solution of this problem, a sublset of the original constraints (3.2b)
will be satisfied exictly (i.e., the coirresjponoing components of r will be zero). This approatch

therefore implicitly "discards" some of the violated constraints from the subp)roblem.

The nietliods of Bartholoinew-Uiggs and Fletcher are! basedl on the p~roperties of penialty func-

tions (see Fletcher, 1083, for at survey). A feature of these treatments of inconsistent constraints

is that a is always non-zero in (3.10). An alternative approachl is to define, the composite function

only when the conistraints are! found to be inconsistent. Other SQP methods with a strategy of
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this type have been suggested by Powell (1977), Schittkowski (1983), Tone (1983) and Gill et a].

* (1084b).

The second techniqune for the treatment of inconsistency is based on th observation that

only the range-space portion of the QP search direction is ill-deflned when the constraints are

incomipatible. With this approach, a well-defined procedlure is used to compute pit, andl p. and p-

are obtained from (3.7b) and (3.7c). The most straightforward application of this approach is to

- define pit as a solution of the linear least-squares problem

mniize l1c + Ap,,112, (3.17)
Pit

which gives r as the smallest constraint shift (in the least-squares sense). This choice of pRt

is equivalenit to computing the first iterate of the Gauss-Newton method for nhinhlnixing the

two-norin of the ijonhiiiear constraint violations. Therefore, the strategy for decaling with the

c:onstrainits hkas changed from the possibly unmsolvable problem of finding a point such that c(z) = 0

to the always solvable p~roblemn of minimizing E r! Mz.
Since A must be rank-deficient when the constraints are inconsistent, the solution of (3.17)

is not unique. A suitable choice of pit in this case is the minimum-length solution, which can be
comnputed using the complete orthogonal factorization:

PAQ( . 0),

where P' and Q are orthogonal matrices aund L is a lower-triajigular inatrix whose dlimension is p

eqjual to the rank of A.

Unfortunately, neither of these tedniques resolves the difficulties caumsed by con~straints that

* are almost inconsistent (iLe., ill-conditioned). I-comaitioning iii A will tend to cause p,, to be large

iii normi (sve (3.7a)). In thiese situations it, is necessary in practic.e to limnit the nori of p. It might -

* appear that the least-length solution of (3.17) would automatically be satisfactory. However, the

collipi itationl of p using theU co mpete orthogonal fac torization imvolves. umriomus p~ractical dlifficulties

- ill parfic~ilar, a, strategy itmusi. he included for estiniating the rank of A. It is well known that

* ~ ~ ~ a tiviiifiit-ion or immguerical "ranuk" is jrhI.-((jedut.The ralik cal itever be' 4letefliiied

* without imaking anl exp~licit judguinemt about scaling, i.e., a dlecision ats to which quiant-ities call be

cOnsidler('d "negligible". Tme choice of rank is critical in thme Gauss-Newton miethod because a

* slight alteration in the valmue of the tolerance used to estimate the rank may lead to conmpletely

(ifferent behavior.
If the composite function (3.16) is used, an explicit bound onl the norma of p may be enforced

* ~~by te'mporarily imuposing adlcitiomna) constraints on the problem. (This typ~e of procedure is iased

within trust.-region algoritluns for unconstrained op~timization.) The effect of tile trulst-region

* ~constraints is to mfodify (implicitly or explicitly) the dlerivative information that dlefines tme search

* direction.. For example, if a temporary hound is placed on time two-normn of p, thme search (direction



Practical Aspects of Nonlinear Programming 19

satisfies equations in which the second-derivative approximation is modified by a multiple of the

identity matrix. Thus, ZTtIZ and A are implicitly modified - an unfortunate result, since we

would prefer the projected Hessian approximation to be independent of the conditioning of A.

The development of stable robust methods for dealing with ill-conditioned constraints is

still an active area of research. One possible approach was suggested in Section 1.2, where small

perturbations of constraints were used to resolve inconsistencies caused by modelling inaccuracies.

By changing the constraints (3.2b) to suitable perturbed inequality constraints, (3.2) always has a

bounded solution. For example, consider defining PR as the solution of the inequality-constrained

quadratic program

mininize lpt

subject to -6 :5 Ap, + c 5 6, (3.18)

where 6 is a vector of small quantities that are forced to approach the feasibility tolerances for

the original constraints as z approaches :*. The subset of constraints active at the solution of

(3.18) may then be used to define Z md Y, from which p, and p can be computed using (3.7).

4. Methods for nonlinear in.equality constraints

4.1. Background. In the final problem to be considered, all the constraints are nonlinear

inequalities:

NIP ninimize F(z)

subject to c1(z) 0 0, i 1,...,m.

We consider this simplified form in order to concentrate on the treatment of nonlinear inequality

constraints.

Let the matrix A(z) denote the Jacobian of c(z). The constraint ci is maid to be active at

X if ei(z) = 0, and violated if r4(z) < 0. The Kuhn-Tucker conditions for NIP are similar to

those for the eijtality-constratnt case, except Ilit they involve only constrainiis artive at X, and..

"ilnpse a sign restriction on the Lagrange midtipliers. The major dilference Ietween ine(uality-

and equality-constrained problems is that the set of constraints active at the solution is unknown

in the inequality ease. Therefore, algorithms for NIP must include a procedure (termed an at.tive-

set strategy) that determines the correct active set ---- usually, by maintUining a working wt that

estimates the active set. In this section we discuss the additional algorithnic comlexity in SQP

methods that arises specifically from the presence of inequality constraints.

4.2. Formulation of the QP subproblem. Broadly speaking, two extreme types of QP

'o subproblems can be posed when solving inequality-constrained problems. The first - called an

IQP strategy - corresponds to representing all nonlinear inequality constraints as inequalities
p •'

"' '''-- '"'- -'-- '":" L L- "L'' -- ,'"2_L:-'-.:; '''- ''. L -. .2 - .. . . . ..¢ .: . c --... -.. .. '_.'-'D --
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in the QP subproblem; this has been by far the most widely used formulation in published SQP

methodIs. The standard IP search direction is thc solution of

minimize gTp + lpTHp (4.1a)
PC-.

subject to Ap -c, (4. 1b)

where 11 is ani approximation to the Hessian of the Lagrangian function and A is the Jacobian of

c(x) evaluated at the current iterate. fit gencral, the solution of (4.1) must be found toy iteration.

Thuis, the structure of an SQP method with an IQP strategy involves major and minor iterations

-the minor iterations being those of the quadratic programming method.

a~jBecaitse (4.1) includes all the conistraints of NIP, it is convenient to take the active set of

the QP a-s a prediction of the active set of the nonlinearly constrained prob~lem. The theretical

justification for this strategy is that the QP (4.1) will make a correct prediction of the active
set of the original problem in a neighboxrhood of x* for any bounded positive-(lefiuiite matrix H

(Robinson, 1074). Furthermore, t0 e multipliers of (4.1) approach the multipliers of NIP as thc

iterates converge to x, and hence it is common to take the QP multipliers as the next multiplier
estimate.

The second extreme form of sub~problemn in SQP methods involves a QP with only equality

constraints. In order to itse an EQP strategy, some determination mummst be made before posing

ithe QP as to which constraints are to be included. An EQP niethoci should have t he property

thatt it will select the correct active set in some nieighblorhood of r.Therefore, such mnethods

tend to Ahoosc constraints that satisfy properties of the active constraints in a neighborhood of

thle Solution e.g., are "sumall" in nlagni~idle, or satisfy the sign re(litireiients for the Lagrange

mliultilhier estimates. A hemiefit of ant EQP mnethiod ii, that, in general, the subproblem will be
* eaiuer to solve than one with inequmaity constraints.

To a large extent, the active set str ategy will determine the choice of quasi-Newton update -

* and Lagrange miultiplier e-stimate. For example, if an IQP strategy is itsed, the imethod used to

solve (4.1) will require specification of the full matrix ff. On the other hand, ani EQP strategy

is usu1ally inipleimemied with an approximiation to thie projected Hessian. The rollowmig tble
su inlariAem the major featiires of the two active-se-I, strategies.

EQP IQP

* QP subproblem: * QP subproblem:

minimize g~p + lpTHp minimize g~p + lpTHp

subject to Ap=-. subject to Ap)> -c.

* Least-squares multipliers. a QP mltipliers.
* Projected Hessian ap~proximlationi. e Fuill Hessian app~roximlationl.

These two active-set strategies are the extremes of a whole range of possibilities. Other

methods have b~een defined that use features from both 4plproaches. For example, the method of
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Schittkowski (1081) solves a QP subproblem of the form (4.1), but uses a pre-assigned working set
to specify which of the constraint gradients should be recomputed for the next major iteration.

Similarly, it is possible to treat linear constraints with an EQP approach and nonlinear constraints
with an IQP approach (see Gill et al., 1984d).

It is important to note that IQP methods can be implemented so that, as the solution is

approached, the amount of overhead per major iteration is the same as for ai EQP method (i.e.,
solution of a single set of equations of the form (3.3)). This can be achievel by solving (4.1) with

a QP method that allows the active set from one subproblem to be used to initialize the next.
Since the active set of the subproblem eventually becomes the correct active set for the nonlinear
problem, QP subproblems near the solution reach optiniality in only one minor iteration.

4.3. Active-set strategies in quadratic programming methods. Quadratic programming
methods for problems with inequality constraints solve a sequence of problems (3.3) in which the

constraints in the working set are treated as equalities. The major differences among QP methods

arise from the numerical procedures for solving the associated linear equations, and the strategies
that control changes in the working set. (Modern QP methods are surveyed by Fletcher (1981)

and Gill, Murray and Wright (1081).)

We briefly outline two methods of selecting constraints for the working set when solving (4.1).
At each iteration, let p and A denote the current estimates of the solution and optimal multiplier
vector, and let r denote the residual vector r - Ap + c. The "hat" notation indicates qutantities

assoiated with the working set. The vector bp is lefine l such that p + fp is. the solution of a QP
with the originad objcx'tive function, subject to the constraints of the working set held at equality,
and 6A denotes the corresponding change in the multiplier estimate. As indicated in Section 3.2,
4) and are the solution of the linear system

(H AT) ( ) -(gq - ATl) (4.2)

where g. denotes g + Hp, the gradient of the quadratic fnction. The algorithms considered here
always attenpt, to move from the mininum on one working set to the minimum on another by

Iaking steps of the forim p + 61 mud A + 6A. However, the jnainhnance of certain properties of the

working set an calse a step a (0 < 1) to le takeni, whiere (t ei(el.ds tiupoi the act.iv(-set

strategy being utsd.

In an active-set feasible-point QP method, p is feasible (ri > 0 for all i), but A is not dual-

feasible (i.e., Ai < 0 for at least one i). Changes in the working set are designed to maintain
feasibility of p, but to move interior to constraints that have negative Lagrange multipliers. At

a typical iteration, the working set comprises the constraints satisfied exactly at p (i.e., i = 0 in
(4.2)). If p + Sp renains feasible (i.e., ri + a j > 0 for i not in the working set), then the full step

of unity is permitted. A constraint with a negative multiplier (usually, the most negative) is then

deleted from the working set. Otherwise, a is taken as the smallest step such that the residual of
a constraint not in the working set becomes Yero at a, and the corresponding constraint is added

- = -=- - ... "- "- -- -,- '-' ', = '- -, ,' - .- " " _. " . . ." . .'"''- . - -. . ." . ""'.' ' .-.- . . . .- i
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to the working set. For more details concerning the implementation of feasible-point quadratic

programming mnethods, se Gill and Murray (1078) and Gill et al. (1984a, 19851)).

The second strategy is typical of (l(al-feasildlo active-set l1letlhods. In these Ilethodls, p is not

feasible (i.e., somne ri < 0) bult A is always dual-feasible (all Ai 0). Changes in the working sct

are designed to maintain non-negative multipliers while moving to satisfy the violatedl constraints.-

H At the beginning of at typical iteration, all the constraints in A are satisfied exactly except one

(i.e., i is at multiple of a unit vector in (4.2)). The step length a is taken as one! if p + bp is dual-

feasible (i.e., Ai + 6,\i *: 0). Otherwise, a is chosen as the largest step such that Ai + ctbA1 = 0 for

an index i in the working set, and the( correspoinding constraint is de(leted front the working set.

After a untit step is taken, a constraint with at negative residual (usuially, the most negative) is

added to the working set. (Note that we have given at considerably simlified (description of the

dual-feasible iteration in ordler to enmphasize the similarities between dual- anid iprimnal-feasible

methods. In p~rac~tice, 61ad). aemo.fon lretyfo (4.2) because the new constraint may

be dlependenit on the constraints already in the working set.) For further information concerning

the implementation of (hlal-feasilble qu~adratic programming methods, see Goldfarb and Iduani

(1983) andl Powell (1983b).

For both of these active-set strategies, each change in the working set leads to a simIple

change to A, which in turn lead,.; to a change in the factorizations used to solve (4.2).

Both of the active-set strategies described requlire an initialization procedure to obtain an

initial lprillial- or (Ilal-feasible point. As notedl above, for efficiency within ant SQP method, it is

critical that this p~rocedure shouIld be able to uitilize a pre-assiglled working set.

Thie initializationm procedure for the p~rimial feasible-point method is equiivalent to a linear

p~rogramnnlmg problem. Consider the qumn of infeasibilities

(P (a'"p+ CJ

Note thiat v(p) is a limicar function that is zero at any feasible poinit, and positive at an infeasible

point. mrerefore, a feJLsibh' poinit can, be rounmd by Iltimmizilig 1)(1)) siibhject t~o conJuilmwig to satisfy
* j~te cmiistraiitts witit positliye residlils idt 1). T.IiW fi iCtio u ??(p) miay ie i 111i7.ied I siig it ac-tive-

Aet, strategy that is almtost. identical to that of tile fe-asible-p)ointt, actIive--set inethod. The prineilpil

differencee are that the( search tlirectiot is dlefined m4 Z ZrVv)(P), amnd Ck is choe11 as 8(.11

Where al is thme niaximnumII step that can be taken without violating (oie of the( constraints that

is currently satisfied, and a 2 reaches the furthest constraint along k)p that, is citrreitly violated.

(Several violateti constraints muay becroine satisfiedl (luring a sinigle iteration.) For elliciemicy, the

iiplemnen1tatiomi of this proceduhre sliulild reflect the simailarity of (.te linear algebraic compllutations
assotwiaI.(' with iterations in both thme feasibility and QP p~hases iii larticular, each iteration

involves ant update of the sane factorization of time working itet. The complutations ill both

phases titay be performed by exactly tile sairie programn mnodutles. The two-Iphase natu~re of the
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algorithm is reflected by changing the function being minimized from the sum of infeasibilities

to the quadratic objective function. An important feature of this typc of implementation is that0

if the pre-assigned working set is similar to the active set, just a few changes in working set

are necessary to achieve feasibility. In p)articular, if the initial point is feasible, the procedure

merely computes all the relevant factorizations (which are also needed for the QP iterations) and

performs a feasibility check.

If a dual-feasible active-set strategy is used, the following initialization proccdtire may be

employed. The procedure is based on finding a subset of the pre-assigned working set onl which

the multipliers are positive. First, the mtinimum of the quadratic on the pre-assigned working set

is computed by solving (4.2) with p = 0 and A =0. If the 6Ai are ixon-negative, the initial point

can be taken as p =6p and A = 6A. Otherwise, a constraint with a negative multiplier is dleleted,

the factorizations are updated and (4.2) is solved again. This process is repeated until all the

multipliers are non-negative or the working set is empty, in which caw, p = b~p and A = 6A define

the required initial point. (Note that the unconstrained minimum is trivially dual feasible.)

An alternative initialization procedure is; to start at the unconstrained mininum anil give

preference to adding the pre-assigned constraints. However, if the lpre-assignedl working set is

similar to the arctive set, this scheme is; likely to require more work tihan the procedure above.

First, more operations are required to computte the factorivationg by upd)(ating. Second, even if

the pre-asvigned working set defines the optimal feasible point, the number of QP iterations may

itot be equal to the dimension of the optinial working set, since it cannot he guaranteed that the

multipliers will remin dual-feasible dutring thle intermediate iterations.

4.4. Conditioning of the working set. One of t.:-. iiost impiJortant issuies iii the imuplenen-

Cation of QP' algorithms is rolnistness. During the soution of a notilin('ar p~roblemn, qua1.dratic

subprobleins of wildly varying degrees of difficualty are generated "atoniatically". Evenm if' the

original nonlinearl problein is wedl-conditionled ill thme neighborhood of the solution, thie QP sub-

p~roblemns of the early iterations may be very badly behaved. The imost coinniii (lilliculties

imclude singular or nearly rank-deficient .JacObians, 4nbIproheIs with very sinall feasible regions

ndsever.ly ill-conwlitioni 114ssian inatrices. (For vxantiples, see Section 5.)

( )ie of tine inost, critical Ii'at.wnes of' a (11' iiIlv'itiviitatiii is 1te strategy for iiiaititahi~jg

a w4-ll-condiliojied working wet. The spectral condition jitiibler of A provides a niceawsnare oh' the

degree of intdependlence of tihe constrinmts in the working set. This inunaber (thme ratio of tihe largest.S

to snmllest singular valtues of A) will dlecrease when a conistraint, is deleted fromn tihe working set

andl increase when a constraint is uadled. The worst case occurs when the nmew workinig set is

singular, i.e., an attenipt is madue to add a, constraint tCha~t is dlepend~enit onl constraints already

in tihe working set. However, if a near-dependent constraint is added to thme working set, the

condition wnunhr may increase stibst~uniaily. Accordingly, it is important that the constraint-

selection procedure should consider the condition numbner of time new working set.

With exact aritmuzetic aind it non-singular initial working met, the active-set strategy de-
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scribed above for the primal-feasible method would never generate a singular working set. To

see why, recall that Abp = 0 at every iteration. Thus, bp will never intersect a constraint that is

exactly linearly dependent upon A. In practice. of course, the difficulty arises when the candidate

" constraints are nearly dependent. Determination of the condition number requires the singular

values of A, which would be too expensive to compute. Instead, a QP method can use an inex-

pensive condition estimator -- for example, the ratio of the largest to smallest diagonals of the

LQ factor L (see (3.5)), which is a lower bound on the condition number of A.

Exercising control over this condition estimator turns out to particularly easy in a primal-

feasible active-set method, if it is acceptable to violate constraints by a small tolerance. Suppose

that each constraint has al associated user-defined tolerance that specifies the maximum perinis-

sible constraint violation. Let a.. denote the maximum step at which p + a,. 6p does not violate

any constraint by more than its feasibility tolerance. All constraints at distance a (a < am)

from the current point are then viewed as acceptable candidates for inclusion in the working set.

A criterion that we have found to be particularly successful in practice (due to Harris, 1973) is

to add the constraint whose normal makes the largest angle with the search direction. In the

case where the null space of A is of dimension one (for example, in the simplex method for linear

programming), this choice gives the smallest condition estimator over the candidate set.

An unsatisfactory feature of the Harris scheme is that all the constraints active at the so-

lution tend to be violated by their feasibility tolerances, even when the final active set is not

ill-conditioned. However, this idea can be generalized so that constraint violations by 6 are per-

mitted when necessary to improve the conditioning of the working set, but an attemipt is also

niade to minimize the constraint violations. With this strategy, the constraints active at the

solution tend to be satisfied exactly rather than violated (see Gill et al., 19851). (An interesting

result is that negative steps are somietimies necessary.)

5. Sample runs

* In this section we shall use several examples to illustrate the performance of nonlinear program-

niing software on practical lprollenis. All the.problens were solved inl double precision on ail IBM

" 3081 using the VS Fortran compiler wilh optiinization level 3.

5.1. A comparison of IQP and EQP methods. The purpose of the first set of rnims is to

*illustrate the properties of methods based on the EQP and IQP active-set strategies. Two specific

nmethods for linearly constrained optimization are considered. In order to aid the comparison, the

. methods have several features in common. Both methods recur an orthogonal factorization of

the constraints in the working set and begin by computing a feasible point. Both methods treat

simple boinils and linear constraints separately.

The first method is a standard IQP method for linearly constrained optimization. The

* Hessian of each QP subproulem is a positive-definite BFGS approximation to the full Hessian of

* the objvctive function. At each iteration, a steplength is computed that satisfies the linesearch

0°

. . .. . *=.
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conditions (2.5a) and (2.5b). Each QP subproblem is solved using a feasible-point active-set

mnethod with an orthogonal factorization of the constraints in the working set. The final working

set from the QP of one iteration is used as the initial working set for the next. For additional

details concerning the Fortran implementation, the reader is referred to Gill et al. (1984b).

In our discussion, we shall refer to the output printed during the run. A single line of output

is printed at the end of cich major iteration. The major iteration number is given in the first

column (marked "ITN"). The next colnn "ITQP" gives the number of minor iterations needed to

solve the QP subproblem. The "STEP" column gives the step ak taken along the computed search

direction. "NUMF" is the total number of evaluations of the problem functions. "OBJECTIVE" is
the value of the objective function, F(xk). Columns "BND" and "LCW " give the numbers of simple-

bounl constraints and general linear constraints in the working set. "NZ" is the dimension of

the null space of the current matrix of constraints in the working set. The next five entries

give information about the derivatives of the problem at the current point. "NORM GF" is the

two-norm of the free components of the objective gradient g*, and "NORM GZ" is the two-norm of

k g . "COND X", "COND HZ" and "COND T" are estimates of the condition numbers of the Hessian,

projected Hessian and matrix of constraints in the working set. "CONY" is a set of four logical
variables CI, C2 , C 3 and C4, used to inform the user of the quality of the current estimate of

the solution, with the following meanings. C1 is true if the projected-gradient norm is small; C2

is true if constraints are satisfied to within the user-specified tolerance; C3 is true if the signs of

the multipliers indicate optinality; and C4 is true if the last change in z was small. Finally, in
some of the runs an "S" is printed as the last item of the iteration summary. This indicates that

it was necessary to skip the BFGS update to the approximate Hessian.

The se'omi implementation is based on an EQP active-set strategy used in conjuaction with "

ia BFGS approximation of the projected Hessian ZTHZ. The EQP is solved using the orthogonal

* LQ fac'torization aud the Cholesky factorization of the projected Hessian (se (3.3) and (3.5)). If

• - the objctive funtion is decreasing at the step to the nearest satisfied constraint, the constraint

is added to the working set. Lagrange multipliers are computed when the projected-gradient

norm is less than some loose tolerance. If the smallest multiplier is negative, the corresponding

constraint is delted from the working set.

The iteration slmnmary is tie s ame as that h'or the IQP iuethod except. that, oly the condition

estinmate of the projected Ilessian is printed (the full Hessian is not recurrexl), and additional

information is printed about each change to the working set. When the status of a constraint
changes, the index of the constraint is printkd, along with the designation "L" (lower bound), "U"

* (uipper bound) or "E" (equality). Indices 1 through "Ni" refer to the bounds on the variables, and
the remaining indices refer to the general constraints. 'KDEL" and "KADD" denote the indices of

the constraints leaving and entering the working set. If an entry in one, of these colunus is zero,

a constraint was not deleted or added. "MIN LI " is the multiplier associated with the constraint

just deleted. If no constraint wan deleted during the relevant iteration, thme entry in this column

is "--" The information printed in the "CON column is different from that given in the IQP

-* oO . . . . *. * ... . ... .. .° .... . . . . . . . . .•-..'...".... .-.
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method. Ci is true if the projected-gradient norm is smaller than some loose tolerance; C 2 is true
if the projected-gradient norm is smaller than some tighter tolerance; C?3 is true if the change in

the objective function was sufficiently small; and C4 is true if the change in x is small. Note that

the loose tolerance on the projected-gradient norm must be satisfied before any multipliers are . .

computed and ay constraint is deleted.

Figure I gives the output from runs on a well behaved seven-variable linearly constrained

problem with seven general linear constraints and upper and lower bounds on the variables. At the

solution, two bounds and three general linear constraints are active. A comparison of the output

from the two runs will illustrate one of the major differences between IQP and EQP active-set

strategies -- the different pattern of changes to the working set. In an EQP method, the problem

functions are computed after every step along a search direction. Moreover, a constraint will be
deleted from the working set only when the current point is considered to be sufficiently close
to the nminimum on the current working set (albeit to a very low accuracy). In other words, a '
constraint will be deleted only when the method has accumulated sufficient information about

the curvature of the problem on the current working set. By constrast, many constraints may be

added or deleted during a single major iteration of an IQP method. In the run given in Figure

la, the IQP strategy finds a very close approximation to the correct active set during the first

subproblem.

-, ,ISP STEP N1W OCTE we LC NZ No" OF mm 2 cm NZm. C H Cm T COW-
, S 0.00-0, , 1.217, 3 3 , 1.7, .E c .00 ,.00 1.0 4I PTT
1 1 5.20-el 3 9.59190 Of 3 3 1 1.10 NS 1.140 02 1.0 00 2.0 Of 1.0 01 FFTF
r 2 1.0o0a 4 0.492305 1 3 2 1.1003 2.3002 1.00s 3.0 of .0 1 FFF
3 1 1.00 00 9.3120005 t t 1.10 03 7.190 01 1.0 00 2.0 00 1.0 01 .TF
4 , 1.000O0 6 9.29600 05 2 3 t 1.10 03 1.5009 1.0 00 3.0 00 1.00I TTTF
5 1.00 7 9.2960005 9 3 t 1.10 03 5.151-02 1.0 00 3.0 00 1.0 01 TIr
6 I 1.0000 0 9.29MOD 05 2 3 2 1.10 03 1.230-04 1,0 3.00 1.001 TITF
7 I 1.00 o0 9 9.29600 05 2 3 a 1.10 03 5.970-07 1.0 OS 3.0 00 1.0 SI TMT

EX"T 3W MOAE.- DUORS 0 RnAJg 7 WIVAL a9

Figure la. Results of an IQP method on a seven-variable linearly constrained problem.

1134 JOEL JAN STEP ObS CSJitTIV2 e LC WE 400 at "M 3S COD HZ c u T COW"
* 0 0 0.00-01 1 1.170 It ' 1.311:900 -- 1. '0 7.0 1 T FFP
I :L 1:L I .N0-0 2 0.16*0 0 4 9.700S -7.0 F FTFS

1 0 33.1.60-01 3 1.750 06 2 4 1 3.260 O -- 1.0 O0 7.0 01 T FT-
3 IIU 0 4.90-01 5 9.5t230 O 3 1.730 O -2.80 03 1.0 00 1.0 93 T FTF
* 0 0 1. O00 6 9.43570 of 32 .3 01 -- I.0 00 .0 i1 T FTF
5 3X 0 1.00 09 7 9.343*005 1 3 1 1.t 2 -1.0 0 .0 Of 2.D 01 T FT
4 0 4L 1.80-01 0 9.29700 2 3 a 3.7 01 -- 1.0 00 1.0 01 F FTIS
7 0 0 1.00 s0 9 9.29600 0s 3 it 3.9000 - 1.0 00 1401 P FTF

J0.000 109.2900D 3 2 1.4-03 -* 3.000 1.0 01 TT-
S0 O 1.0020 It 9.2900 2 3 2.10-04 -- 1.00 1.001 TiTT ""-

Lx][L PnAS. 334OP 0 ZTEN 9 WEVAL Is

Figure lb. Results of an EQP method on a seven-variable linearly constrainedi problem.
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During the final few iterations, the methods are essentially identical, with a single minor

iteration being performed in the IQP method. Note that the asymptotic superlinear convergence

rate is evident from the unit steplengths in the "STEP" column and the sequence of converging

"NORM GZV entries. This column may be used to verify the convergence to a local muinimum (see

Gill, Murray and Wright, 1981).
0

5.2. Are IQP methods superior to EQP methods? It is a popular myth that the more
"opportunistic" IQP active-set strategy will tend to find the correct active set faster than an

EQP strategy. The next two problems are intended to demonstrate that this is not always the

case. On some problems the IQP method will be faster, on others it will be slower.

In Figures 2a and 2b we give the IQP mid EQP results for the minimization of the six- S
variable nonlinear test function "Exp 6" subject to simple-bound constraints upon the variables

(see Biggs, 1972b). The constraints are the vector of simple lower bounds (0.5,9,0.9,4,3,2) and

simple upper bounds (oo, o0, oo, oo, 4.9, oo). The solution lies at the point (1, 10, 1, 5, 4, 3), where

no simple bounds are active. (For brevity, the output from some of the less important iterations

has been omitted.)

Exp 6 is a problem for which the IQP method is substantially faster than the EQP method.

Since no bounds are active at the solution, the ability of the quadratic subproblem to drop many

of them during one major iteration allows the IQP method to identify the correct working set

rapidly. By the seventh iteration, all the bounds have been deleted from the working set. An

adequate solution is identified at iteration 32. By contrast, the requirement of some significant

reduction in time )rojected gradient on each working set considerably slows down the rate at which

the EQP method can delete constraints. It is not until iteration 55 that tile correct working set

is identified.

Cases where the more conservative strategy of the EQP method gives better performance

are illustrated by the problem "Weapon" (see Bracken amid McCormick, 1968). The objective

function is
20 "

F(x) : u (fla!' - 1), -

which is minilmed subje- to twelve general linear constraints and bomds on all the varia)les.

At the solution, 75 l)ounds a(l wven linear constraints are active.

When al)plied to this problem, both imethods require approximately the same number of

function evaluations (see Figures 3a and 3b). However, the EQP method needs significantly less

CPU time to obtain the solution -- 3.42 seconds compared to 19.48 seconds for the IQP method.

The reason for this discrepancy is that the EQP method maintains a much better approximation

to the working set. While moving from the initial feasible point (a vertex) to the solution, the

EQP method maintains a projected Hessian approximation that never becomes larger than 19

(the size of the projected Hessian at the solution is 18). This performance is to be contrasted

with that of the IQP method, for which the dimension of ZTHZ increased to 81 during the first

IL
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V" IM STEP OB JECTIVE r LC u le Hs" W Ml U COWS N CON H CUON T COW
0 3 0.00-01 1 t.85610-411 0 0 1.10 00 1.130 00 1.1 00 1.0 00 1.0 00 FTT
I a 1.10-01 3 1.16020-01 I 0 5 6.40-01 0.390-01 9.0 Os 4.0 0o 1.0 as PTTF
2 1 1.00 00 4 6.15030-02 0 5 3.20-0 3.210-01 4.0 00 4.0 00 1.0 00 FTFF
3 1 1.00 00 5 1.As430-02 1 0 5 1.20-01 1.170-01 1.0 01 0.0 00 1.0 0o PTTF
4 I 1.0000 1.234S0-02 1 0 5 4.60-02 4.600-0t 1.0 01 4.0 00 1.0 00 FTIP
5 1 1.00 00 7 1.1395-02 I 0 5 3.20-02 3.170-0t 9.0 01 2.0 0I 1.0 00 FTTF
6 2 1.o c0 8 5.65210-03 0 0 6 1.3D-01 .360-S1 I. OZ 1.0 O 1.0 00 FTPV
7 I .00 80 9 9 4.0110-03 0 0 6 4.00-o 4.030-O 9.0 0I 1.0 SI 1.0 00 FTTF

I 1.00 0 10 4S8290-03 0 0 6 1.40-02 1.400-02 0 01 9.0 00 1.0 00 FTTF
9 1 1.00 00 II 4.0W70-03 0 0 6 1.0-02 1.40-02 1.0 O 2.0 01 1.0 00 FTTF

27 1 1.00 00 29 1.12630-07 0 6.00-06 6.10-04 7.0 03 7.0 02 1.0 00 FTTF
20 1 1.00 00 30 7.42780-09 S 0 6 .10-OS 0.000-0S 6.0 03 7.0 02 1.0 00 FTTF
29 1 1.00 00 31 1.017S0-09 0 0 0 3.70-Os 3.660-05 6.0 03 8.0 02 1.0 00 FTTF
30 1 1.0000 32 1.17040-09 0 0 6 t.00-OS 1.760-0S 7.0 03 7.0 02 1.0 00 FTTF
31 I 1.00 00 33 1.11610-09 0 0 6 4.30-06 4.310-06 7.0 03 7.0 O t.0 00 TrTF
32 1 1.00 00 34 1.1140-09 0 0 6 4.00-07 3.9S0-07 7.0 03 7.0 02 1.0 00 TTT

EXIT NP PHASE. DIUI 3 -NOJ111 32 NFEVAL 3 36

Figure 2a. Results of an IQP method on the six-variable problem Exp 6.

1"It JOEL JAW00 STEP OU B JECTIVE m LC l 10VIE 1z l Coo NI calls T COV
0 0 0 0.00-01 t 1.85810-01 0 0 t .170-01 -- 1.0 00 1.0 F FFF
1 0 0 1.30-01 3 1.41470-01 0 0 2 S.02O-0I -- .0 00 1.0 O0 T FTF
2 0 0 1.0000 4 .31490-02 0 0 2 0.810-02 -- .0 1.100 T FTF
3 6L 0 3.30-01 6 2.30560-02 3 0 3 2.560-02 -S.2-0t 2.0 00 1.000 T PI
4 SL 0 1.00 o0 7 E.1920-Ot 2 0 4 7.820-02 -4.00-02 1.0 01 1.000 P FTF
5 0 0 1.00 o0 0 1.95970-02 0 0 1.40-O - 1.0 t t.0 00 P FTP
0 a 0 1.00 0 9 I.3960-02 0 4 3.4"0-01 --. 0 01 1.0 00 Fr
7 0 0 1.0000 I0 8.10640-03 2 0 4 I.tO0-SI -- 4.0 0 1.0 00 P PW
0 0 0 1.0030 II 0.7024003] 0 0 6:570-0 :- 0.001 1:000 P FTF
9 0 0 1.0000 12 0.19710-03 4 4 0 .10o-03 - 3.0 I 1.0 00 1 FTF

to 4L 0 1.0D 00 13 6.14450-03 1 0 3 9.280-03 -7.19-03 2.0 0I 1.0 00 PFTF
t11 0 0 1.00 00 14 5.96230-03 I 1 5 tO-02 6.001 1.0 P IP
Ia 0 0 1.00 00 IS 3.51390-03 1 0 5 2.170-02 -- 2 Ot 1.000 P FTF

35 0 0 1.OD 00 39 1.M190-05 1 S 5 3.1011-03 8- .6 03 V.0 0f P PIP
36 0 0 1.00 00 40 1.010-OS 1 0 5 1.140-03 -- 9.0 03 1.0 00 FTF
37 0 SU 8.30-01 41 9.83690-06 t 0 4 5.670-04 -- 0.0 02 1.0 00 P FTF
30 0 0 1.00 00 42 9.00110-06 2 0 4 4.140-04 -- 5.t0 1.0 00 PPT
39 0 0 1.00 O0 43 9.79120-06 2 0 4 3.671-0S -- 5.0 02 1.0 00 FTF
40 0 0 1.00 0 44 9.79110-06 2 0 4 1.020-06 - ,.02 1.0 00 FTT
41 0 0 1.00 00 45 9.79110-06 2 6 4 9.640-07 - 0.0 0t 1.0 00 P FTT
42 0 0 1.00 00 46 9.79110-06 2 0 0 I.VD-07 - 0.0 02 1.0 00 T FTT
43 ItL 0 1.00090 47 9.79000-00 1 0 5 3.640-03 -2.40-05 9.0 02 1.0 00 P PIT
44 0 0 1.00 40 40 9.7070-06 I 0 5 1.20-0 -- 1.0 03 1.0 00 F FTF
43 0 0 1.00 o0 49 9.77900-04, I .900-04 -- 1.0 03 1.0 00 F Pit

53 0 0 1.0000 ,7 0,.01-O I 0 3 7.410-05 -- ,.00 1.000 Ps P"
54 0 0 1.00 00 0 8.9610-66 1 5 6.240-06 - 1.0 04 1.0 0 T FTF
33 SU 0 1.00 00 59 8.96110-SO 0 5 3.610-0S -1.40-0S 1.0 04 1.0 0 p PFT

116 0 0 1.00 O0 10 4.50310-1 0 6 7.590-05 1.0 0O 1.0 0o FPIP
117 0 0 1.00 00 101 1.70710-l I 0 3.010-S6 -- 7.0 04 1.0 00 T TTF
1I 8 0 1.00 Of 142 429114-11 0 0 6 3.310-0 - 1.0 a3 1.0 00 1 lIP
119 0 5 O0000 14" " .' 7 -I1 09 0 0 2.40-90 - 1.0 0 1.00 T T"
t2 0 0 1.00 of 144 .t S0-I 0 9 1.017-0 .0.04 1.0 00 T TF
let 0 S 1.00 00 143 1.17120-14 S 0 0 1.5007 - 9.0 04 1.0 0 YT

EXIT LC 11A15. DNFOR 0 O 3n 3 Ill NUEVAL 3 145

Figure 2b. Results of an EQP method on the six-variable problem Exp 6.
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"M rrq SUCP SW 05ECTW an LC NE IN W ON" a6 cow N11 Cm. N o T cw
0 300.0 I

°
-. 20310402 2i 3 7 5.10*01 5.410O91 t.0001 1.0400 1.0#00 FFT

I t0 I.00400 2 -9.I12040] 94 3 so t .10#,0 1.140$9 3.0*09 t.0900 1.000 F7FF ..-
t 3 S.00O00 3 -1.43820#13 16 01 V.t4OO D.AW0N 2.0401 2.0*00 1.0009 FFFF

s # ".*@ 4 -I.730*03 I9 4 67 S.7000 5.60*00 9.04O1 2.9*00 1.04*0 FFFF
4 3 1.00#00 5 -I.64010#03 2? 4 69 3.70*0 3.430*00 4.001 3.0*00 1.0400 FTTF
S 4 1.00:00 6 -. 44310003 29 5 44 2.40t00 2.30#01 3.0401 4.D00 5.0*60 FFF

a 2 1.00900 7 -9.07•9 *03 t2 5 67 2.00400 1.770000 1.0*02 4.0100 1.0000 FTF ,

7 0 1.00*00 8 -. 64060*03 34 6 60 1.30*00 1.350*00 2.0402 4.0*00 9.0400 FFFF
S 2, 1.00000 9 -I.9610#03 35 4 9 1.40*00 1.220#00 2.0002 4.0400 1.0000 FFFS

9 2 1.I000 10 -1.69310003 36 6 50 1.30000 1.920'00 2.0402 4.0.00 t.0*00 FFFFS
0 1 0.00*00 1, I.:4": 0*03 34 , 0 .30.00 .040*00 t.0*02 4.0*00 1.0000 FTFFS

99 2 2.70900 03 -9.4970:03 37 4 57 1.91000 9.340-091 E0*0U 4.0*00 1.0'00 FTFFS
I2 2 1.00*00 15 -1.69690003 36 6 4 6 1.1000 9.110-01 2.0*02 4.0+00 1.0*00 FITFS
93 3 1.20*0 17 -9.79010#03 35 6 36 1.10#00 0.90-01 .0*02 4.0000 1.0000 FTFFS
14 2 1.7000 19 -9.70130403 39 6 53 1.10-00 8.430-01 2.002 4.0000 1.0*00 FTWFS
93 2 4o.o0 29 -1.70490403 40 6 54 4.10-01 6.610-01 7.0401 4.000 1.0400 3 FTFFSS.
16 2 3.60000 23 -1.70710403 41 6 33 4.50-01 6.260-01 9.0$.1 4.0000 1.0400 FTFFS
17 2 3.6000 23 -1.7000403 42 4 S2 0.40-01 6.150-01 9.040I 4.0*00 1.0#00 FTFFS
90 2 4.8000 26 -1.71130*03 43 6 31 7.00-01 5.770-01 9.0001 4.0400 1.0*00 FTFF$
9 .490*00 31 -1.71330#03 44 6 N0 7.40-01 5.490-01 9.0*01 4.0+00 1.0*00 FTlFS

t0 t 1.90#00 33 -1.71370003 45 6 49 7.30-01 5.370-01 9.0001 4.0000 1.0*00 FTFFS

30 1 1.00+00 3 -1.7010403 34 6 30 4.0-01 2.420-01 4.04*0 3.0401 1.0400 VM7S"
40 3 6.0000 73 -1.732130403 6 7 31 3.40-01 1.370-01 2.0402 0.0091 2.0*00 FFFF
s0 2 1.00€00 84 -9.73310#03 43 7 30 3.40-01 1.340-01 1.0*03 1.0402 t.0400 FTP.
60 1 1.00#00 04 -1.73370 03 64 7 29 2.00-01 ?.200-02 3.0402 1.0'02 1.0400 F77F 5
70 5 9.00,00 104 -1.73400003 65 7 25 2.10-01 9.060-02 6.040t 1.0#02 1.0400 FFFF
s0 t 1.00400 194 -1.73450083 49 7 24 2.70-01 4.030-02 1.000t 9.0*09 1.0000 MY9
90 1 1.00#00 124 -1.73460*03 69 7 14 t.60-01 3.480-02 6.0#02 1.040 1.04"00 FTFF
100 1 .00*00 134 -1.?044003 70 7 t3 2.60-01 2.030-02 3.0*02 1.0'02 1.0#00 FTVF
990 1 1:00*0 144 -1.73460403 71 7 22 2.60-01 I.$30-02 1.0*01 1.0#02 1.0400 TTFF
i90 1 1.00000 154 -1.73470003 72 7 11 2.50-01 R.M-02 S.O*02 1.0402 2.0#00 FTF
130 1 1.00400 164 -. 736700*3 72 7 91 .50-01 2.00-02 9.00 1.0#09 9.0#06 FTFF
940 i 9.00400 174 -. 7470403 72 7 29 2.70-01 t.870-1 2 0.0*03 1.0*02 1.0000 FTP?
S 1 1.00409 104 -. 73410*03 73 7 t0 CM-01 3.310-02 2.0*03 .0003 #.O* FTF

160 1.0000 194 -I.3491003 73 7 t 2.110-01 3.310-02 2.0003 3.0403 1.0000 FTF
170 2 1.00*00 204 -1.73500$03 73 7 to 1 .50-01 t.100-02 .002 1.11693 &.DO00 FFFP
00 1 9.000 214 -1.73500003 75 7 10 Z.50-01 9.33003 8.0*02 5.0*03 Z.0400 TTFF
I9 " 19.00*00 224 -1.?3M0*03 73 7 14 2.30-09 3.870-03 6.0008 5.0403 2.11#89 1F

too 1 1.00*00 234 -1.73500*03 75 7 10 E.50-01 1.0 0-03 3.0*02 5.003 t.0400 TTFF
290 1 1.00*00 244 -1.73500*03 75 7 18 t.30-01 t.470-04 3.0*02 5.003 9.0000 TTFF
C19 1 1.00400 241 -1.73530003 75 7 90 1.50-01 1.310-04 S.0402 5.0*03 2.0*00 TTFF
212 I1.00400 246 -1.73500603 73 7 10 2.50-01 4.100-05 .0002 3.0*03 t.0000 TIFF
M13 1.00.00 2 -,.7350#03 73 7 to 2.10-01 4.900-05 5.0.02 3.0003 2.0*00 1rF
214 1 1.0000 2" -1.7330403 7 7 94 2.30-01 4.700-05 1.0*02 S.0403 2.0000 TTFT

EXMT lip PHAS£7001 3 0 NAJI1S 2 14 WEVAL t 244 5

Figure 3a. Results of an IQP miIethod oi the WeapOu problem.

two mutjor iteral.iiiits. During .he, early QP IbIprollins the )o)or II(.sin approximation causes

the IQP nIthod 14) delete too many consltraints from the working set. Frther nii or iterations

are then ne del to add the constraints that were deletl unnecessarily. The large dimension of
the projected Hessian also inhibits the ability of the method to recover quickly. Weapon has a
Hessian matrix with niany negative and tero cigenvalues. If there are not enough constraints

in the working set, the iinesearch function is likely to have negative curvature along the search
direction and the quasi-Newton update will be skipped. If this occurs for several consecutive
iterations, the original poor curvature information is left unaltered - as is the inability of the

QP to predict the correct active set. This behavior was apparent during iterations 8-30 where
no quisi-Newton update could be performed.

..........................-................- ......-..-....... o, •.o..o-.. --. ..- , _ .o.-.-..% %,%"%
* . . .11 . .y . j J"*mI j) . j. l + j j • " " " . 1 q " . . . "1 .1.1 "1 -1- 1
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"MlI JOEL JOO STEP W" OBJECTvE San LC NZ NM OZ 1 1t1 IN CW NZ C ' T COW
* O 0 0.00-Ot 1 -1.95391 O91 9 0 0.0.0-1 -- 1.0 0 4.0 00 T TFF
I 72L 0 1.00 00 2 -3.15650 02 90 9 1 5.20 00 -1.70 Of 1.0 O0 4.0 00 T FrF
I lu a t.00 00 3 -3.63720 02 90 8 a 4.440 -Z.40 01 1.0 00 1.0 00 T FTF
3 67L 0 1.00 00 4 -s.Z4900 02 69 S 3 5.470 00 -2.20 01 Z.000 1.0 00 T FTF
* 97L S 1.00 00 5-.84500 02 SO & 4.600 00 -1.90 01 .0 00 2.0 00 T FTF
5 67L S t.00 OS 6 -8.1237002 87 & s 3.430 00 -1.30 01 3.0 00 2.0 O0 T FTF
8 77L 96L 2.10-01 7 -8.4275D 02 87 & S 7.900 00 -1.30 01 .5.0 00 2.0 00 T FTF
7 44L 46L 1.40-01 G -8.79370 02 07 S 5 1.210 01 -1.20 01 3.0 00 2.0 00 T FTF
* 0 0 1.00 00 9 -9.94300 02 87 G S 5.2800 0 -- 3.0 00 2. 00 T FTF.
9 63 0 1.00600 I0-I.0430 08 8 8 3.0000 -l.30 :1 3.00 30 00 T IFTF

10 92L S 1.00 00 It -1.20140 03 85 0 7 t.530 00-1.30 t 3.0 00 3.0 aS T FTP

to 22L 0 1.00 00 21-1.5030 03 708 1* I.4tO 4-3.S 00 6.000 3.00 @11 T TF
30 0 0 1.00 SO 31 -1.58920 03 73 6 17 1.510 00 -- 3.0 01 3.0 00 T FTF
44 0 07L 5.SO01 41 -1.66140 03 78 7 IS 1.11110 -- 1.0 0I 3.0 00 T FTF
so 0 0 1.00 00 SI -1.69350 03 77 6 17 1.080 00 -- 1.0 01 3.0 00 T FTF
60 0 0 S.O00 62 -1.71000 03 79 7 14 4.360-01 -- 4.0 01 2.0 00 T FTF
70 S 0 S.OD 00 72 -1.71520 03 7 S 14 3.360-01 -- 3.0 01 2.0 00 T FTF
0 0 0 1.00 00 02 -1.71900 03 78 a 14 2.490-St - 8.0 01 2.0 00 T FTF
90 0 0 1.00 00 9t -I.72420 03 70 0 14 2.050-01 - 3.002 2.000 T FTF

too 0 0 1.00 0f 102 -1.72670 03 77 0 1S 2.740-01 t.0 01 2.0 09 T FTF
I1S S 0 1.00 00 112 -1.72 90 03 77 8 17 2.10-01 - 3.0 0t 2.0 OS T FTF
120 0 0 1.00 0 ta -1.7310 a3 7 6 16 1.090-01 4.0 Of 2.0 Of T FTP
130 0 0 1.00 Of 132 -1.73150 03 7? 6 17 f.010-01 - 3.0 of C.0 0O 7 FTF
146 0 0 1.00 00 142 -1.7312 03 79 8 IS 6.960-02 -- 1.0 Ot 2.0 0 T FTF
ISO 0 0 1.00 00 152 -1.73260 03 70 8 16 5.90-002 -- 2.0 02 t.0 00 T FTP
160 0 0 1.00 00 162 -1.73290 03 78 6 16 3.914-02 - 7.0 01 2.0 00 T FTF
170 0 0 1.00 00 172 -1.73310 03 77 6 17 3.20-02 -- 8.0 01 2.0 00 1 FTF
I1O 0 1 1.00 00 182 -1.73330 03 76 6 1 6.320-02 -- 9.0 01 .O 00 T FTF
190 73U 0 1.00 00 192 -1.733M0 03 75 8 19 2.270-02 -t.OO-Ot 2.002 2.0 0 T FTF
200 0 5 1.00 00 202 -1.7337D 03 75 6 19 4.690-02 -- 2.0 02 2.0 00 T FTF
too 0 0 1.00 00 212 -1.73440 03 73 7 1 3.6910-02 - 21. so t.0 00 T FTF
220 0 0 1.00 00 222 -1.73470 03 75 7 10 t.360-02 -- 3.0 01 t.O 00 T FTF
230 0 S 1.40 00 3. -1.73480 03 74 7 19 6.150-03 -- 3.0 01 2.0 00 T FTF

240 0 6 1.00 00 242 -1.73500 03 75 7 IS 1.760-04 -- 4.0 S1 2.0 00 T TT-
241 0 0 1.000 0 243 -1.73SO0 03 75 7 1 5.020-15 -- 4.0 01 2.0 0 T TTF
242 0 0 1.00 00 244 -1.73500 03 7S 7 10 1.450-OS - 4.0 01 1.0 6f 7 TTP
243 0 0 1.000 245 -1.73S00 03 75 7 1S 1.930-08 -6 4.01 .0 00 T TTT

SXII1LC P4A . IlPM. 0 ZTER24 U EVAL 245

Figure 3b. Results of an EQP nethod on the Weapon problem.

It is difficult to predict in advance whether a particular problemn will be more suitable fi)r an-

EQP method or an IQP method. IQP nethods are likely to be less efficient on problems for which

the QP mtltipliers change rapidly froi one iteration to the next. Problems in this category tend

to be, highly nonlinear or to have rimiy stJ11d Lagramge multipliers. In either case, the significant

chaniges to the working set between iterations seriously impair the ability of he (luasi-Newton.

llJI. to bIild l.(rnIl tiirvature iirorniatiolt ablo it he. fulnclion. Conaversely, IQP methods will

t('mld Wo I ellicie t. if the QP imi1ltil)Iier estilmate are very aiecurate when colputA'l at )oilts

that are far from the solution (for example, if the problem were che to being quadratic).

To a large extent, the relative efficiency of IQP and EQP mnethods depends upon the number

of constraints active at the solution. EQP methods are usually implemented go that as m-any

constraints as possible are included in the initial working set. It is therefore not surprising that

they tend to be more efficient when more constraints are active at the solution. Finally, the relative

eflicieicy of a method is critically depenlent upon the ratio of the amount of work required to

performf a single minor iteration compared to the work required to evaluate the problem functions.

As this ratio increases (as it often does as the size of the problem increases), the advantage will

.....
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swing towards the EQP method.
0

5.3. Typical performance of an SQP method for nonlinear constraints. The remaining

runs were obtained from Version 2.1 of the program NPSOL (see Gill et al., 1084b), an IQP quasi-

Newton method for nonlinearly constrained optimization. The Hessian of each QP subproblem

is a positive-definite UFGS approximation to the Hessian of the Lagrangian function. The QP

subproblem is solved using a feasible-point active-set method with an orthogonal factorization of -

the constraints in the working set.

The merit function used in NPSOL is a smooth augmented Lagrangian function that utilizes

the properties of slack variables. The inequality constraints of NIP can be reformulated as equality

constraints by adding simply-bounded slack variables a-. Estimates of the slack variables are

used in the linesearch to give a smooth augmented Lagrangian function. At each major iterat'n,

a vector triple (p, 6A, 6s) is computed that serves as a direction of search for the variables x,

multiplier estimates A, and slack variables a. (All the elements of the vector triple are available

from the solution of the standard IQP subproblem considered in Section 4.2. The vector 6A is

defined asp - A, where 1 are the QP multipliers, and the vector bs is given by Ap+c- s. Note that

the QP solver does not need to treat the elements of a as additional variables.) The steplength

is required to produce a sufficient decrease in the augmented Lagrangian merit finction

m in

,C(x,A,a) = F(x) -I A,(ci() - s,) + f (cj() -,,

The value of p is initially set to zero, and is occasionally increased from its value in the previous

iteration in order to ensure descent for the merit function. Thus the sequence of peIalty pa-

rameters is generally non-d(ecr(,ming, although NPSOL has the abiity to reduc(, the value of the

penalty parameter a limited number of times.

The iteration summary printed in each of Figures 4 6 is identical to that provided by the

linemly coistrained IQP method, except that the merit fumction value ("MERIT") is printed

iustead of the objective value, and the lditional columns "NC", "NORM C" mid "RHO" give the

number of nonlinear constraints in the working set, the two-normi of the residuals of constraints

iij .,i working m-l, mid tfhl, penalty p'armmet.r mused in thl me rit, rmictiow. I ,ll or tII NPSOL

runs, he reasilbility toler ce for each nonlinear constraint was set at 10 O'

Two runs were selected to illustrate the behavior of an IQP method when solving well

behaved (but non-trivial) nonlinear problems. Figure 4 gives the results obtained on a version of

the Hexagon )roblem. (For more details of this problem, see Wright, 1976. A slightly different

formulation is given as Problem 108 by flock and Schittkowski, 1981.) Hexagon is a popular test

problem for nonlinear j)rogramning methods. All constraint types me included (bounds, linear,
nonlinear), and the Hessian of the Lagrmgian finction is not positive definite at the solution. The

problem has nine varial)les, finite bounds on six of the variables, four gmeral linear constrainta,

and fifteen nonlinear constraints. Six nonlinear constraints are active at z*.

" " ' .... """" "" "........'.'.................... .... .- :- -:..... ::: :.i::
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The problem solved in Figure 5 is derived from a 30-bus optimal power flow (OPF) problem

of optimizing the distribution of electrical power over a network. The problem has 67 variables,

60 nonlinear constraints, and upper and lower bounds on all of the variables. At the solution, 54

nonlinear constraints and three simple bounds are active.

IT I100 SME H"8 HERIT 00 IZ MC IZ "OR"1 W MR" 62 CO HZ COW H COW T HNo" C mHe COWI
0 6 0.00-01 1 -. 43331 @0 0 IS 4 8.00 00 9.280-01 1.0 00 1.0 0 3.0 00 1.10 0 0.00-01 FFT
I 1 4.00-01 3 -1.39S80 00 00 4 2.10 0 9.21-OZ 1.0 00 2.0 00 2.0 00 4.150-O1 5.30-01 FFT?
2 1 1.0 00 4 -1.29950 01 0 0 4 2.00 o0 1.640-01 2.0 00 2.0 00 1.0 00 6.600-02 I.ID 00 FFT?
3 3 1.00 00 5 -1.3 z3220 0 * 6 3 2.00 1.080-01 1.0 @0 7.0 00 2.0 00 11.060-0 I.ID 00 FFT
. 1 1.00 cc 4 -1.34630 00 0 6 3 2.10 00 1. -1903 2.0 0 4.0 a2 2.0 0 1.400-02 1.10 0 FFTF
5 1 1.00 00 7 -1.34960 00 0 0 6 1 2.10 00 2.740-02 1.0 00 3.D 02 2.0 00 4.9S0-03 1.10 00 FFTF
6 1 1.0 0 0 -1.31980 10 0 0 I 3 2.90 @0 .20-0 8. 00 2.0 02 - .0 0 1.120-03 1.10 0 FF1?
7 1. 00 c 9 -1.3499" 00 0 0 4 3 8.10 00 s .100-03 4.0 00 3.0 02 .0 00 9.790-OS 1.10 00 FFTF

I 1 .0D 0 1 -1.33000 00 0 0 6 3 2.10 00 1:230-03 4.0 00 2.0 02 2.0 00 :.000-04 1.10 00 FF1
9 I1.00 @ 1 -1.35000 @ 0 6 3 2.10 00 9.350-03 4.000 2.0 02 2.0 0 t.130-06 1.40 01 FT?

is 1 1.00 0 12 -1.35000 00 0' 6 3 2.10 00 2.370-05 4.0 00 2.0 02 2.0 00 5.900-09 5.60 00 FTTF
II 1 1.00 00 13 -1.3S000 00 0 4 3 12.10 00 t.3S0-06 4.0 00 2.0 02 Z.O 00 4.S20-IO 5.6000 lTTT

EXIT NP PHASE. INFiI 0 IJTS - II HFEVAL 3 13 NCEVAL 3 13

VARIABLE STATE VALUE LONER 00"D UPPER 10"I LAGR IULTPUEN RESIDUAL

VARBL I FR 0.60946500-01 0.000000 NONE 0.0000000 0.60950-01
VARBL 2 FR 0.3976S02 NOE H"ON 0.0000000 0.10000 II
VARIL 3 FR 1.000000 NOE NOHI 0.0000000 0.10000 It
VARSL 4 FR 0.5976497 NOW NONE 0.0000000 0.10000 11
VANOL 5 FR 0.09441.I0-8 0.0000000 ONt 0.0000000 ,.,0950-01
VARBL 6 FR 0.3437710 0.0000000 HOSE 0.0000000 0.3436
VARS1, 7 FR .8000900 0.000000 NONE 0.0000000 0.SO00
VARSL 8 FR -0.S000000 HOE 0.000000 0.0000000 0.3000
VAROL 9 FR -0.3437708 NOE 0.0000000 0.0000000 0.3438

LINEAR CONSIR STATE VALUE Lam no"R UPPER nOSU) LAIR ILTIPLIER RESIDUAL

LUC0N I FR -0.5367037 HONE 0.000000 0.0000000 0.5367
LNCON 2 Fit -0.4023498 HOIE 0.000000 0.0000000 0.4023
LNCOM 3 FR 0.4023S03 0.0000000 "NE 0.0000000 0.024
LICON 4 FR 0.S367033 0.0000000 NOwE 0.0000000 0.5367

NINEI COMT STATE VALUE L SER oOS UPPER BOUN LAW MULTIPLIED RESIDUAL

HLCO I FR 076.7100 .00000 SE . 04 0.0781
HLCON 2 FR 0.687347 0.000000 0.0000000 0.N"7" .:87
NLCOH 3 LL 0.49903940-10 0.0000000 SE 1.031:3 10-01 -0.49900-11
HLC04 4 LL -0.34S747D-09 0.0000000 NOIE 0.3202626 -0.34530-09
SLCGN • FR 0.5272163 0.0000000 HONE 0.0000000 0.S273
HLCOI 4 FR 0.3928143 0.0000000 NONE 0.0000000 0.3920
NLCOH 7 FR 0.61147 0.0000000 NONE 1.0000000 0.58681
NLCON a LL -0.28772920-09 0.0000000 NE 0.1992955 -0.28770-09
NLCON 9 LL -0.14792640-10 0.0000000 IONE 0.32026P6 -0.147?90-10
NLCON 10 UL 0.0000000 HOSE 0.0000000 -0.3437710 0.0000
NLCOM I1 FR 0.381 F11 0.0000000 HONE 0.0000000 0.386I
NLCON 12 LL -0.184S&290-11 0.0000000 NONE 0.83163830-01 -0.16440-11
HLCOI 13 FN 0.3928147 0.0000000 HOSE 0.0000000 0.392"
ULCON 14 FR 0.6673419 0.0000000 NDE 0.0000000 0.6873
NLCOH Is FR 0.6781072 0.0000000 HOME 0.0000000 0.6781

EXIT HPSOL - OPTDIAL SOLUTION FOUND.

Figure 4. Output from the soltion of the well-behaved problem Hexagon.

On these two well behaved problems, the approximate Hessian and working set remain rela.

tively well-conditioned. Similarly, the penalty parameters remain small and approximately con-

" .. . .
.... ..
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stant. The two runs illustrate much of the numerical behavior of a qua.i-Newton IQP method

that is predicted from theoretical analysis. As Zk approaches the solution, just one minor iteration .

is performed per major iteration, and entries in the "NORM GZ" and "NORM C" columns exhibit

the superlincar convergence rate discussed in Section 3.3. Note that the constraint violations

converge earlier than the projected gradient. The final values of the projected gradient norm and

constraint norm reflect the limiting accuracy of the two quantities. It. is possible to achieve almost

fdll precision in the constraint norm but only half precision in the projected-gradient norm.

ZT14 ilWP SUiP la3w WRITN LC MC NZ NOW 011999 SU C011 US CU N DOO. T Now" C MIN0 cowf
S 0.5 f -l.0401l35 1 0 19 7 .006@0 7.730-SO 1.0400 I.0*0S 00•DbI t.920090 5.5 TFFT
1 700-01 3 1.O01000Oi i 1 55 II 1.00000 4.540-SI t.0*SO 3.0*S0 9. 001 1.70#00 4.40+09 FFT,
a 0 •00*0 4 I.*O4]Doe# 1 0 ED 10 1.00400 2.200-SI 7.00i 6.00 1 0.0461 6.310-01 4.S0*0 FFTF
3 0.90-01 6 9•9140-01 i* i;6 i• |.g'@0 .30WU-St 1.301O 1•OoOI 9•0"01 7.130-si t•00.Si FFT7.
4 3 .30-SI • 9.10310O-S I 54 It 1•00450 080-02 9.0400 1.5451 9.0401 1.550-St t•00*SS FFT7

0 I0-69" I :96000-S 1 55 0I0104:: 63.350-5 "l.401 :: 3. 1 030 7.08-SO t.0' F17 I 1.0oO I . 769.0-01 1 S 54 It 1.00400 1.00-0S t.0001 3.001 9.0001 1.090-03 2.80#00 FFTF
& G 8.00400 I 9.640-01 1 S4 It 1.00400 3.30-42 3.0401 3.0#01 9.0*1 7.490-04 t.80000 FFTF

9 0 .00*SS ii 9.700-SI 5 50 It 1.50000 7.920-0t 5.0400 9.0401 0.04O3 0.290-05 2.80*00 FFr77 -

IS 1.00*'0 10 9.71000-SI 0 5 5 7 I•00'S0 .t2-Ot S•D4OS 9.0"01 9.0401 0.I5D-OS t.I0OS FF1F1.-

7 1

II 1.:004: IS, 9 1:84 S i 0 :I I O 7 D 3.0 40 . 30 S ::IS o.04 1 9 5 0 . 0 - 0 i 8 4 5
I3 3 .SS 4973:S 54 9t 1.0 4 110-S:t t:03 05 9.001 3:005 3.545 177FF

13 8I00@ 57 9.7150-0 3 5 30I .00 1.360 -S1 &D040 9.45 t~45 :.00S 8.03:50 FF7

S O 1.0000 13 9.77670-01 t5 a 5 I 1.00400 7.90-03 9.0440 9.041 9.0401 4.90-O 2.80*0S FFFF
I: 1•045 14 9.7340-:1 t 5 54 S 1.00 - 0 . -St •.04O0 1.O4O3 9.0401 3.110-S3 .80*09 FFTF

i7 I.00*SoOO 91 .73010-SI 3 5 10 I .O040J 1,1-St 3,5*O1 3.3451 9.S*OI 5.500 -03 t.•0S 7FFF•.

I : I•0400 ii 9.73500 SI 3 3 I; 1.00400 1.3-St 353 7.3453 1.34OI 1.90-0 3.hS*0O FF
80 1 .00O00 1: .7150-Si 0 a 4 Y 1.00400 0.70-03 .0.0 .31 .FM, 1.60-51 t•800 F.'"

iIJ 1.504O0 35 9.7t39W-SI 05 54 9I 1.00400 5.390-5O3 7.041 i.0"03 i.340t 7.990-SO t.000 PF1

1 0 1.00 30 9.7430-01 0 O 9 0400 0 1.100-03 2.0*0 3 * N. 6400-05 t.0011 FFFF
Is 1•00OO t7 9.740-01 3 ] 3 4 0 1.00*00 0. 0-03 3.0501 .04oS i.0301 9.610-053 2.80$0 FF1F.
to i•1* OO 9.7030-00 3 5 54 11 1.00400 10.670-03 S*.1-0 7.403 9.0-4O 1.30-03 2.8045 FFF

35 t :.S:' 9 9.715W-Si 0 0 10 1 .C0400 3.Ioo-03 9.3453 6.04411 9.0*Oi 1.990-04 2.0000 F717

i I 1.03*00 t0 9.7740-01 0 55 0 9 1.0000 1.80-03 7.0011 1.0002 I.o00t s.383-05 t.0400 FF1F7- -

27 t •0400 SO 9.740-0 3 0 54 1S 1.00 .400 1i2b-S .S*401 5.0* 1.05 ••,.OW-OS 2.80*00 FFFF
t I 1.00400 32 9.71300-01 3 54 1I 1.0040 1•530-93 3.0401 5.003 1.0402 5.090-03 2.0011 FF11
st 1.0400 33 7.70: • S O 0 50 9 .SD*SS 3.110-02t 3.04 5 .0 0 1.040 5.010-03 1.0000 F17"

t3 1 1.0o4oo 30 9.71050-Si 0 54 9• I.00*go •330-03; 3.040t 9.040t I.O*0i 1.11o-00 t.S0*oo FFT77•.

3 t 1.00O0 35 9.7I0-Ol 3 0 IS $.00*00 .2-03 t.33 9.00 I.O*O2 :.3M-03 •80'00 FF7 -.-o .
to 1.S0*0S 30 9.7t50D-01 4 0 54 9i 1.0000 6.740-03 5.001 1.040 t 1.0.02 S.40-5 1.811400 FFTF

30 1.00205 37 9.7t040-01 3 0 54 0 1.00400 5.730-03 ,0t 0.1 .0*0 1.002 .80-00 t.80400 FFTF
a I 1.0t00 35 9.71O40-S 3 O S 1.00a00 t.SO tO*O3 5•Oe03 I.M'St t.570-0s .0"0S 71TF
5 I .00.00 39 9.7200-01 3 5 5 .1 .*DODD 1.910-00 3.04O2 5.55O3 I.OOt t•230-0 3.8000 FFTF

3a 1.00400 a0 9.72040-01 O 5 s4 iS 1.00#00 3.400-03 I.o* 9.00s 1.002 17.0-03 2.00400 FFT
3t 1.00400 72 9700-01 3 0 54 IS .00*00 1.OS6-04 1.0 0 0.O*Ot S *Ot 1.D40-6S .00400 FFTF
35 Z 3.00401 9 7 040-01 3 S 54 i0 1.00000 3.260-O I.DO S 6.0*0 1.0*01! 0.390-05 3.00*60 FYT
39 I 1.00*00 43 9.7i040-0I 3 54 iS -. 50i00 3.340-0 5.O0 7.3*0t I..04t 0.5.0-0 t.80*0O FTF

to :•aa"0: 3 99: 10,003" '3 : 54 1 00,3 2":515300 -03 tOe0t 0.0401 1 .0402 $.060-03 1.60*00 "FTT

30 I .00*0 4 9.7200-1 3 5 54 IS 1.00400 1.350- .0 3. 04•0 0.503 1.0*52 1.150-0 t.80400 F717

31 1 i.0000 05 9.720M0-01 3 a 54 Is 1.00400 1.000- .0403 0.0403 1.0*0 5.170-5 2.8000 FT17
39 I 1.00400 43 9.72040-01 3 0 54 to 1.00#00 t.000-04 S.0*0t 7.0*02 1.042 1.00-0 t.80400 FF1
03 1.0000 07 9.73040-SI 3 0 J4 t0 1.00#00 0.707-04 S.0*03 6.000& $.o0 3.600-06 1.0000 FTTY

4 1.:00:00 4 9.7tO40-01 0 So If 1.00400 1.098040% 3.Oe11 5.O4Ot 1.0062 1.570-06 1.80600 FrTF

37 •000 46 9.72040-01 3 9 4 11 ISO0 t.8e0oft 4.0ot 7.002 J.Dot 1.14o-e4 1•aD*oe rTYp . -

3 1.004go 47 •.?2040-O1 0 24 t 1 0 *OO 2.?60-0 5.042 1.0002 1.0002 600-t0 2.O0*OO MYT ...
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Figure 5. Output from the solution of the OPF problem.

The satus an(l values of the variables and constraints at the final ;olution give nseful infor-

mation about the progress of a nininization and the degree of difficulty of the problem. Figure S-
4 includes the final solution output from NPSOL for Hexagon. The printout is divided into three

scwtions, giving information about the final status of the variables, general linear constraints and

: o .• •, , .* • 0 • ~~~~~~~~~~~. ...... •o.......... ...... ,... .. o .•o.. . . .... ,0o~.••...o•
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nonlinear constraints, respectively. Within each section, "STATE" gives the status of the associ-
ated constraint in the predicted a'tive set (FR if not included, EQ if a fixed value, LL if at its lower

bound, and UL if at its upper bound),. VALUE" is the value of the constraint at the final iteration.

"LOWER BOUND" and "UPPER BOUND" give the lower and upper bounds specified for the constraint

("NONE" indicates that no bound is enforced). "LAGR MULTIPLIER" is the value of the Lagrange

multiplier. This will be zero if STATE is FR. The multiplier is non-negative if STATE is LL, and
non-positive if STATE is UL. "RESIDUAL" gives the difference between the entry in the "VALUE"

column and the nearer bound.

In the first section, "VARIABLE" is the name (VARBL) and index of a variable. In the lin-

ear constraints section, "LINEAR CONSTR" is the name (LNCON) and index of a linear constraint.

"NONLNR CONSTR" is the name (NLCON) and index of a nonlinear constraint.

Note that, although the feasibility tolerance for the nonlinear constraints is of the order 10- ,

the final accuracy is considerably better than this. This is because the constraint violations
are being refined during the last few iterations while the algorithm is working to reduce the

projected-gradient norm. Another feature worth noting is that the the constraint values and

Lagrange undtipliers at the solution are "well balanced". For example, all the multipliers are
approximately of the same order of magnitude. This behavior is typical of a well-scaled problem.

5.4. Performance on an ill-conditioned problem. Finally, we give the results of the IQP _

method on the problem Dembo 7. This problem is a geometric programming formulation devel-

oped by Denibo (1076) of a five-stage membrane separation process. The problem has sixteen

variabls, eight linear constraints, and eleven nonlinear constraints. All sixteen variables have
simple upper and lower bound constraints. The problem causes many difficulties for a nonlinear

programming algorithm because of bad scaling and linearly dependent constraints.

The results for Dembo 7 show a number of features that are comnmon to badly behaved

problems. First, note that the number of minor iterations does not decline quickly. Moreover,

the presence of near-zero Lagrange multipliers sometimes causes the QP to require more than

one iteration relatively close to the solution. A very common symptom of a badly behaved

probhlem is the large value of the condition estimator of the full approximate Hessian, which is
to be contrasted with the relativly nmodest vale of the conditioni of the projected Hessian. This

observatiott has so,,i" rlevai,cc to the choice tor ethod for the (1' sulproblem. Clearly, special
care must be taken when" impletnenting my QP method that require the fawtors of the full

Hessian (as opposed to the projmcted Hessian). Starting the minor iterations at an unconstrained

minimum of the QP subproblemn will result in very large values of 6p (see. Section 4.3).

Note'that the third bound constraint, the third linear constraint and eleventh nonlinear con-

straint all have very small residuals but are not in the working set. The values of the nonlinear

constraints in the working set vary significantly in order of magnitude, indicating that the con-

straints are badly scaled. In constrast to the solution of Hexagon, in which the accuracy of the
constraints was much better than required by the convergence tolerance, some of the nonlinear

constraints are only just satisfied to the required feasibility tolerance.

. .. .
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IT" TIP SIP l NOIT IN LC Nc WE NI OF Nw a COe HZ cow N cow T N C RHO cow'
0 30 e.g 1 .8 s*02 3 9 3 1.1003 5.070-01 1.0400 1.0*00 7.0403 t.190-01 0.0 FFFT
1 13 9.60-0146 -t.13240402 3 2 5 4 6.10*00 1.760#00 4.0401 6.0#06 8.0*02 I.500*4 140406 FFFP
8 1 6.10-03 6 3.73050*0 8 9 7 5-6.1002 1.870400 1.0400 1.000 1.0*05 .490000 1.60*03 FFFF
3 It 5.70-08 0 4.41•Z0*ot 8 1 7 6 6.10402 1,1200o 5.0*01 3.0*06 5.0'03 1.410400 6.00#0t FFFF
* 7 1.00'00 9 4.02000#02 t 3 5 6.20402 2.250#00 1.0000 1.0008 4.0+02 1.060-01 0.00'02 FFFF
S 9 t.00400 to 3.92760*42 8 1 7 0.1002 1.620#00 2.0*01 4.0408 7.0*01 6.180-01 1.30'03 FFFF
6 t7 1.00'00 It 3.0380402 I 3 5 6 1.70#O2 7.240-01 1.0406 2.0010 4.0'03 3.030-01 0.80#01 FFFF*
7 20 1.00+00 It 1.30930#02 4 1 6 1 i.50402 4.9 O#00 0.D*01 7.0411 I.0'0 9.000-01 3.70001 FFFF
* I1 5.00-01 14 -6.21900*03 3 8 6 5 6.40#02 3.120'01 1.0004 3.0#12 8.0#02 4.520-01 6.4003 FFFF
9 8 1.00600 15 1.90030402 4 8 6 6 6.90402 3.210#01 5.*OS 4.0011 6.004 2.370-02 3.8040t FFFF

10 1 1.00000 14 1.0960*02 4 5 S 6.40'02 3.190#01 6.505 1.0*12 1.0401 6.800-06 3.60003 FTFF
11 3 1.00400 17 1.697040 4 S 5 6.40#02 3.170001 3.0#06 9.0010 !.0401 6.200-07 6.20#02 FTFP
It 6 1.00400 10 1.68830'02 6 1 5 6 1.60002 2.990#01 t.0002 S.0*!1 1.001 1.090-01 6.20+02 FFFF
13 2 1.00400 9 1.80090'02 7 1 5 3 1.50#02 t.290-01 2.0000 4.011 1.0401 7.470-03 6.20402 FFFF
14 4 1.00400 20 1.63570402 5 1 6 3 6.30#0Z C.350-01 2.0#00 1.0012 2.0#01 1.975-03 6.2D*02 FFFF
is 3 1.00400 21 1.03520'02 5 I 6 3 1.30002 2.360-01 4.0401 S.0"11 3.0*03 3.040-06 .104.05 FTFF
16 4 1.00400 82 1.7807*0"2 6 8 & t 6.20*02 2.410-02 1.0400 1.0'18 8.0#03 1.460-02 6.50'03 FFFF
17 1 1.00000 23 1.75090402 4 t 6 8 6.20402 6.760-02 1.5400 1.0410 7.0403 3.040-03 2.90003 FFFF
is 2 1.00'00 24 1.75060*02 5 8 7 2 6.20'02 6.250-02 4.0400 1.0"10 7.0*03 6.870-05 2.9003 FFFF
19 4 1.00400 2S I.?S0SO* 2 6 2 6 a 6.20+02 1.050000 t.0401 2.001t 7.0'*S I.S60-02 2.90*03 FFFF
20 2 1.00#00 26 1.74790*02 6 8 7 1 6.20*42 0.940-03 1.0#00 t.0+11 4.0*02 1.020-03 2.90+03 FFFF
21 1 1.00'00 27 1.7400002 6 2 7 46.0402 6.540-03 1.000 7.0410 0.0'0 1.160-06 3.30'04 FTFF
22 3 1.00'00 80 1.7400+02 6 7 1 6.20002 1.110400 4.0400 1.0442 2.0'03 6,490'00 6.40403 FFFF
13 10 2.50-01 30 1.74790402 6 8 7 6.0#02 1.380-03 1.0#00 4.0'11 2.0'03 7.400-05 6.40#03 TFFF
24 1 1.00400 31 1.74790402 6 8 7 1 6.20'02 7.930-04 1.0000 S.0411 2.0#0) 3.810-06 3.8005 TIFF
25 3 1.00400 32 1.74790002 5 1 6 a 6.20'oZ 5.510-04 t.0+00 6.0'11 2.0003 1.190-07 4.7004 TTFF
26 2 1.0000 33 1.74790#02 6 1 7 2 6.20'02 6.040-05 4.0400 5.0411 2.0603 9.430-08 3.70004 TTFF
27 2 1.00'00 34 1.76790002 5 1 7 3 6.20402 1.300-06 2.0003 5.0'411 2.0#03 1.120-07 3.7D#04 TTTF
26 I 1.00400 35 1.74790002 5 I 7 3 6.-0*02 1.230-06 2.0*03 S.0*11 2.0*03 1.93 0-07 3.704 TTI1

EXIT HIM PHASE. 1U01 3 0 NIO.TS t 2 EVAL a 3S HCtVAL 2 33 5

VARIABLE STAIR VALUE LOWER •OUS UPPER BOUND LAGS HULTZPLII RESIDUAL

VAROL I FR .037732 .1000000 .9000001 .0 .96230-0"
VARSL I FN .6161084 .1000000 .9000t .0 .63890-01
VA/IL 3 FR .9000000 .1000000 .90000 .8 -. 13800-16
8lS. 6 IL. .9100000 .1000000 .9000000 -436.7906 .0

VARSL S FR .9000004 .9000000 1.000000 .0 .14670-06
VARL 6 UL .1000000 .1000000-03 .1000000 -13.19769 .0
VARDL 7 FR .1070316 .1000000 .9000000 .0 .7032-02
VAOUL G Fi .4 1"367 ..400000 .9000000 .. .11080-01
VARSIL 9 FN .1900367 .10000 .900000 .0 .9080-08
VAOL 10 FR .1900367 .10000• .9000000 .0 .90091
VANOL 11 FR 05.0452 1.000000 1000.000 .0 49.0
VAOL It FR 5.096043 .11400005 E.06 .0 5.46-
VAROL 3 FRl 72.63782 4.000000 500.0000 .0 71.64
VARGL 16 LL 500.0000 500.0002 190l.000 .619900 .0 5.
VAR L I LL 500.0000 300.0406 10.00 .14149 .0
VAOOL 16 LL .10000000-03 .1000000-95 5016.0000 .IS46715 .0

LIINEIAOMM STATE VALUE LOSER s0um6 UIPPI 0U6 LAR MULTIPLIER RESIDUAL

IJEOO I FR -69.O9NHE .6 .0 500.@
ULCON 8t FR -. 44"6690-06 NONE .0 .0 .140-06
LICI 3 FR .43877790-16 NONE .0 .0 -. 13080-16
UCON 6 FR -. 636916D0-04 NONE .0 .0 .03090-01
LICON 5 FR -. 12335210-01 MR .6 .0 .81340-01 L
LHCO 6 UL -. 55114150-16 HE . 47.19963 .5SiS-46
LICON 7 Fit .5551150-16 NONE . . -.SSSI"--16
UICON G FR .9919963 NONE 1.0"0000 . .417440-0

OHIULU CONSI STATE VALUE LOm 8OUN UPPER MU LAWI UPLIER RESIDIUAL

NLC01 I LL .0 .0 7.621522 .0
HLC0C 2 LL -. 0277600-13 .0 NoE 403.726t -.62770-13
HLCOI 3 LL .14275700-16 .0 HOE t63.3147 .11280-16 L
4LCO 6 LL -. 1164440-16 .0 "oE 104.7086 -. 2166-16
NLCO 3 LL -. 15621610-6 .0 NONE .0 -. 15620-06
MLCON 6 LL -. 11324S*0-06 .0 NONE .0 -. 11340-62
HLCOH 7 L. -.18489350-13 .0 NONE 37.49S37 -.41800-13
HLCOH 6 LL -. t5951400-14 .0 NOE 402.754 -.25950-14
NMOH, 9 LL -. 13877790-16 .0 HOME 66.4886? -. 13080-16
HLCONi 10 LL -.2006600-45 .0 "Me .0 -. 200.60-15
44.004 1 FR .4924760-15 .0 SUE .0 .49t5-I.

EXIT DPI1. - OPTIIAL 0LUTION FOUND.

Figure 6. Output from the solition of Dembo 7.
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Finally, we wish to emphasize that, despite severe ill-conditioning in the Hessian of the
Lagrangian and serious dependencies among the constraints, Dembo 7 is solved in a relatively
routinc manner. Dependent constraints are successfully omnitted from the working set in such a
way that its condition estimator never gets much larger than 105. Moreover, the final convergence
rate, although not superlinear, is quite rapid.
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